Suppr超能文献

ROS 介导线粒体膜通透性和自噬抑制调节博来霉素诱导的细胞衰老。

ROS-mediated lysosomal membrane permeabilization and autophagy inhibition regulate bleomycin-induced cellular senescence.

机构信息

Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.

Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.

出版信息

Autophagy. 2024 Sep;20(9):2000-2016. doi: 10.1080/15548627.2024.2353548. Epub 2024 May 18.

Abstract

Bleomycin exhibits effective chemotherapeutic activity against multiple types of tumors, and also induces various side effects, such as pulmonary fibrosis and neuronal defects, which limit the clinical application of this drug. Macroautophagy/autophagy has been recently reported to be involved in the functions of bleomycin, and yet the mechanisms of their crosstalk remain insufficiently understood. Here, we demonstrated that reactive oxygen species (ROS) produced during bleomycin activation hampered autophagy flux by inducing lysosomal membrane permeabilization (LMP) and obstructing lysosomal degradation. Exhaustion of ROS with N-acetylcysteine relieved LMP and autophagy defects. Notably, we observed that LMP and autophagy blockage preceded the emergence of cellular senescence during bleomycin treatment. In addition, promoting or inhibiting autophagy-lysosome degradation alleviated or exacerbated the phenotypes of senescence, respectively. This suggests the alternation of autophagy activity is more a regulatory mechanism than a consequence of bleomycin-induced cellular senescence. Taken together, we reveal a specific role of bleomycin-induced ROS in mediating defects of autophagic degradation and further regulating cellular senescence and . Our findings, conversely, indicate the autophagy-lysosome degradation pathway as a target for modulating the functions of bleomycin. These provide a new perspective for optimizing bleomycin as a clinically applicable chemotherapeutics devoid of severe side-effects.: AT2 cells: type II alveolar epithelial cells; ATG7: autophagy related 7; bEnd.3: mouse brain microvascular endothelial cells; BNIP3L: BCL2/adenovirus E1B interacting protein 3-like; CCL2: C-C motif chemokine ligand 2; CDKN1A: cyclin dependent kinase inhibitor 1A; CDKN2A: cyclin dependent kinase inhibitor 2A; FTH1: ferritin heavy polypeptide 1; γ-H2AX: phosphorylated H2A.X variant histone; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HUVEC: human umbilical vein endothelial cells; HT22: hippocampal neuronal cell lines; Il: interleukin; LAMP: lysosomal-associated membrane protein; LMP: lysosome membrane permeabilization; MTORC1: mechanistic target of rapamycin kinase complex 1; NAC: N-acetylcysteine; NCOA4: nuclear receptor coactivator 4; PI3K: phosphoinositide 3-kinase; ROS: reactive oxygen species; RPS6KB/S6K: ribosomal protein S6 kinase; SA-GLB1/β-gal: senescence-associated galactosidase, beta 1; SAHF: senescence-associated heterochromatic foci; SASP: senescence-associated secretory phenotype; SEC62: SEC62 homolog, preprotein translocation; SEP: superecliptic pHluorin; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB.

摘要

博来霉素对多种类型的肿瘤表现出有效的化疗活性,但也会引起各种副作用,如肺纤维化和神经元缺陷,这限制了这种药物的临床应用。最近有报道称,巨自噬/自噬参与了博来霉素的功能,但它们相互作用的机制还不够了解。在这里,我们证明了博来霉素激活过程中产生的活性氧 (ROS) 通过诱导溶酶体膜通透性 (LMP) 和阻碍溶酶体降解来抑制自噬流。用 N-乙酰半胱氨酸耗尽 ROS 可以缓解 LMP 和自噬缺陷。值得注意的是,我们观察到在博来霉素处理过程中,细胞衰老出现之前,LMP 和自噬阻断先于细胞衰老的出现。此外,促进或抑制自噬-溶酶体降解分别减轻或加剧衰老表型。这表明自噬活性的改变更像是一种调节机制,而不是博来霉素诱导的细胞衰老的结果。总的来说,我们揭示了博来霉素诱导的 ROS 在介导自噬降解缺陷和进一步调节细胞衰老中的特定作用。我们的发现相反表明自噬-溶酶体降解途径是调节博来霉素功能的靶点。这为优化博来霉素作为一种无严重副作用的临床应用化疗药物提供了新的视角。

相似文献

1
ROS-mediated lysosomal membrane permeabilization and autophagy inhibition regulate bleomycin-induced cellular senescence.
Autophagy. 2024 Sep;20(9):2000-2016. doi: 10.1080/15548627.2024.2353548. Epub 2024 May 18.
2
SQSTM1/p62 and PPARGC1A/PGC-1alpha at the interface of autophagy and vascular senescence.
Autophagy. 2020 Jun;16(6):1092-1110. doi: 10.1080/15548627.2019.1659612. Epub 2019 Aug 28.
4
PLA2G4A/cPLA2-mediated lysosomal membrane damage leads to inhibition of autophagy and neurodegeneration after brain trauma.
Autophagy. 2020 Mar;16(3):466-485. doi: 10.1080/15548627.2019.1628538. Epub 2019 Jun 25.
5
Autophagy drives fibroblast senescence through MTORC2 regulation.
Autophagy. 2020 Nov;16(11):2004-2016. doi: 10.1080/15548627.2020.1713640. Epub 2020 Jan 13.
6
Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration.
Autophagy. 2019 Apr;15(4):631-651. doi: 10.1080/15548627.2018.1535292. Epub 2018 Nov 5.
7
Linear ubiquitination at damaged lysosomes induces local NFKB activation and controls cell survival.
Autophagy. 2025 May;21(5):1075-1095. doi: 10.1080/15548627.2024.2443945. Epub 2025 Jan 2.
8
Impaired TFEB-mediated lysosomal biogenesis promotes the development of pancreatitis in mice and is associated with human pancreatitis.
Autophagy. 2019 Nov;15(11):1954-1969. doi: 10.1080/15548627.2019.1596486. Epub 2019 Mar 30.
9
Therapeutic regulation of autophagy in hepatic metabolism.
Acta Pharm Sin B. 2022 Jan;12(1):33-49. doi: 10.1016/j.apsb.2021.07.021. Epub 2021 Jul 28.
10
Autophagy impairment induces premature senescence in primary human fibroblasts.
PLoS One. 2011;6(8):e23367. doi: 10.1371/journal.pone.0023367. Epub 2011 Aug 8.

引用本文的文献

1
Mitochondria-lysosome crosstalk in microbial infections.
Sci China Life Sci. 2025 Sep 8. doi: 10.1007/s11427-024-3037-1.
2
ACSL4 at the helm of the lipid peroxidation ship: a deep-sea exploration towards ferroptosis.
Front Pharmacol. 2025 Aug 26;16:1594419. doi: 10.3389/fphar.2025.1594419. eCollection 2025.
5
ER‑α36 knockdown is associated with lysosomal dysfunction and proliferation inhibition in liver cancer cells.
Mol Med Rep. 2025 Oct;32(4). doi: 10.3892/mmr.2025.13649. Epub 2025 Aug 14.
6
LAMP3 signature affects cervical cancer progression through autophagy.
BMC Cancer. 2025 Jul 24;25(1):1206. doi: 10.1186/s12885-025-14596-w.
9
10
DDR2-mediated autophagy inhibition contributes to angiotensin II-induced adventitial remodeling.
Clin Transl Med. 2025 Jun;15(6):e70361. doi: 10.1002/ctm2.70361.

本文引用的文献

1
Immune Mechanisms of Pulmonary Fibrosis with Bleomycin.
Int J Mol Sci. 2023 Feb 5;24(4):3149. doi: 10.3390/ijms24043149.
2
Hallmarks of aging: An expanding universe.
Cell. 2023 Jan 19;186(2):243-278. doi: 10.1016/j.cell.2022.11.001. Epub 2023 Jan 3.
3
Aging and aging-related diseases: from molecular mechanisms to interventions and treatments.
Signal Transduct Target Ther. 2022 Dec 16;7(1):391. doi: 10.1038/s41392-022-01251-0.
4
A phosphoinositide signalling pathway mediates rapid lysosomal repair.
Nature. 2022 Sep;609(7928):815-821. doi: 10.1038/s41586-022-05164-4. Epub 2022 Sep 7.
5
Cellular senescence: the good, the bad and the unknown.
Nat Rev Nephrol. 2022 Oct;18(10):611-627. doi: 10.1038/s41581-022-00601-z. Epub 2022 Aug 3.
6
ADAR1 downregulation by autophagy drives senescence independently of RNA editing by enhancing p16 levels.
Nat Cell Biol. 2022 Aug;24(8):1202-1210. doi: 10.1038/s41556-022-00959-z. Epub 2022 Jul 18.
8
Role of Lysosomal Acidification Dysfunction in Mesenchymal Stem Cell Senescence.
Front Cell Dev Biol. 2022 Feb 7;10:817877. doi: 10.3389/fcell.2022.817877. eCollection 2022.
9
Sec62 promotes gastric cancer metastasis through mediating UPR-induced autophagy activation.
Cell Mol Life Sci. 2022 Feb 15;79(2):133. doi: 10.1007/s00018-022-04143-2.
10
The mTOR-lysosome axis at the centre of ageing.
FEBS Open Bio. 2022 Apr;12(4):739-757. doi: 10.1002/2211-5463.13347. Epub 2021 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验