Suppr超能文献

交联剂结构影响动态共价水凝胶的粘弹性。

Crosslinker Architectures Impact Viscoelasticity in Dynamic Covalent Hydrogels.

作者信息

Lin Yung-Hao, Lou Junzhe, Xia Yan, Chaudhuri Ovijit

机构信息

Department of Chemical Engineering, Stanford University, Stanford, CA, USA.

Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.

出版信息

bioRxiv. 2024 Jun 4:2024.05.07.593040. doi: 10.1101/2024.05.07.593040.

Abstract

Dynamic covalent crosslinked (DCC) hydrogels represent a significant advance in biomaterials for regenerative medicine and mechanobiology. These gels typically offer viscoelasticity and self-healing properties that more closely mimic tissue mechanics than traditional, predominantly elastic, covalent crosslinked hydrogels. Despite their promise, the effects of varying crosslinker architecture - side chain versus telechelic crosslinks - on the viscoelastic properties of DCC hydrogels have not been thoroughly investigated. This study introduces hydrazone-based alginate hydrogels and examines how side-chain and telechelic crosslinker architectures impact hydrogel viscoelasticity and stiffness. In hydrogels with side-chain crosslinking (SCX), higher polymer concentrations enhance stiffness and decelerates stress relaxation, while an off-stoichiometric hydrazine-to-aldehyde ratio leads to reduced stiffness and shorter relaxation time. In hydrogels with telechelic crosslinking, maximal stiffness and slowest stress relaxation occurs at intermediate crosslinker concentrations for both linear and star crosslinkers, with higher crosslinker valency further increasing stiffness and relaxation time. Our result suggested different ranges of stiffness and stress relaxation are accessible with the different crosslinker architectures, with SCX hydrogels leading to slower stress relaxation relative to the other architectures, and hydrogels with star crosslinking (SX) providing increased stiffness and slower stress relaxation relative to hydrogels with linear crosslinking (LX). The mechanical properties of SX hydrogels are more robust to changes induced by competing chemical reactions compared to LX hydrogels. Our research underscores the pivotal role of crosslinker architecture in defining hydrogel stiffness and viscoelasticity, providing crucial insights for the design of DCC hydrogels with tailored mechanical properties for specific biomedical applications.

摘要

动态共价交联(DCC)水凝胶是再生医学和力学生物学领域生物材料的一项重大进展。与传统的、主要为弹性的共价交联水凝胶相比,这些水凝胶通常具有粘弹性和自愈特性,能更紧密地模拟组织力学。尽管它们前景广阔,但不同交联剂结构(侧链交联与遥爪交联)对DCC水凝胶粘弹性的影响尚未得到充分研究。本研究引入了基于腙的藻酸盐水凝胶,并考察了侧链和遥爪交联剂结构如何影响水凝胶的粘弹性和硬度。在具有侧链交联(SCX)的水凝胶中,较高的聚合物浓度会提高硬度并减缓应力松弛,而化学计量比失衡的肼与醛的比例会导致硬度降低和松弛时间缩短。在具有遥爪交联的水凝胶中,对于线性和星形交联剂,在中间交联剂浓度下会出现最大硬度和最慢的应力松弛,交联剂价数越高,硬度和松弛时间进一步增加。我们的结果表明,不同的交联剂结构可实现不同范围的硬度和应力松弛,与其他结构相比,SCX水凝胶导致应力松弛更慢,与线性交联(LX)水凝胶相比,星形交联(SX)水凝胶具有更高的硬度和更慢的应力松弛。与LX水凝胶相比,SX水凝胶的力学性能对竞争化学反应引起的变化更具鲁棒性。我们的研究强调了交联剂结构在定义水凝胶硬度和粘弹性方面的关键作用,为设计具有特定生物医学应用所需定制力学性能的DCC水凝胶提供了重要见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c12a/11163571/5a32a42a76b5/nihpp-2024.05.07.593040v2-f0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验