Suppr超能文献

基于 CRISPR-Cas9 的酿酒酵母基因组编辑实现迭代、多重基因敲除和途径整合。

CRISPR-Cas9 mediated genome editing of Kluyveromyces marxianus for iterative, multiplexed gene disruption and pathway integration.

机构信息

MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China.

School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning, China.

出版信息

Biotechnol Bioeng. 2024 Oct;121(10):3269-3282. doi: 10.1002/bit.28736. Epub 2024 May 22.

Abstract

Kluyveromyces marxianus, a thermotolerant, fast-growing, Crabtree-negative yeast, is a promising chassis for the manufacture of various bioproducts. Although several genome editing tools are available for this yeast, these tools still require refinement to enable more convenient and efficient genetic modification. In this study, we engineered the K. marxianus NBRC 104275 strain by impairing the nonhomologous end joining and enhancing the homologous recombination machinery, which resulted in improved homology-directed repair effective on homology arms of up to 40 bp in length. Additionally, we simplified the CRISPR-Cas9 editing system by constructing a strain for integrative expression of Cas9 nuclease and plasmids bearing different selection markers for gRNA expression, thereby facilitating iterative genome editing without the need for plasmid curing. We demonstrated that tRNA was more effective than the hammerhead ribozyme for processing gRNA primary transcripts, and readily assembled tRNA-gRNA arrays were used for multiplexed editing of at least four targets. This editing tool was further employed for simultaneous scarless in vivo assembly of a 12-kb cassette from three fragments and marker-free integration for expressing a fusion variant of fatty acid synthase, as well as the integration of genes for starch hydrolysis. Together, the genome editing tool developed in this study makes K. marxianus more amenable to genetic modification and will facilitate more extensive engineering of this nonconventional yeast for chemical production.

摘要

马克斯克鲁维酵母是一种耐热、生长迅速、不具有 Crabtree 效应的酵母,是生产各种生物制品的有前途的底盘。尽管有几种基因组编辑工具可用于该酵母,但这些工具仍需要改进,以实现更方便、更高效的遗传修饰。在这项研究中,我们通过破坏非同源末端连接并增强同源重组机制来改造马克斯克鲁维酵母 NBRC 104275 菌株,从而提高了同源定向修复的效率,使其能够有效修复长达 40bp 的同源臂。此外,我们通过构建一种用于 Cas9 核酸酶和携带不同选择标记的 gRNA 表达质粒的整合表达菌株,简化了 CRISPR-Cas9 编辑系统,从而无需质粒消除即可进行迭代基因组编辑。我们证明 tRNA 比锤头状核酶更有效地处理 gRNA 初级转录物,并且易于组装的 tRNA-gRNA 阵列可用于至少四个靶标的多路编辑。该编辑工具进一步用于从三个片段体内无疤痕组装 12kb 盒以及无标记物整合表达脂肪酸合酶融合变体,以及淀粉水解基因的整合。总之,本研究中开发的基因组编辑工具使马克斯克鲁维酵母更易于遗传修饰,并将促进对这种非常规酵母进行更广泛的化学生产工程改造。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验