Department of Chemistry, IIT (BHU), Varanasi, Uttar Pradesh 221005, India.
School of Biomedical Engineering, IIT (BHU), Varanasi, Uttar Pradesh 221005, India.
ACS Appl Mater Interfaces. 2024 Jun 5;16(22):28118-28133. doi: 10.1021/acsami.4c02979. Epub 2024 May 23.
Growing challenges with antibiotic resistance pose immense challenges in combating microbial infections and biofilm prevention on medical devices. Lately, antibacterial photodynamic therapy (aPDT) is now emerging as an alternative therapy to overcome this problem. Herein, we synthesized and characterized four Ru(II)-complexes, ., [Ru(ph-tpy)(bpy)Cl]PF (), [Ru(ph-tpy)(dpq)Cl]PF (), [Ru(ph-tpy)(dppz)Cl]PF (), and [Ru(ph-tpy)(dppn)Cl]PF () (where 4'-phenyl-2,2':6',2″-terpyridine = ph-tpy; 2,2'-bipyridine = bpy; dipyrido[3,2-f:2',3'-]quinoxaline = dpq; dipyrido[3,2-a:2',3'-]phenazine = dppz; and Benzo[I]dipyrido[3,2-a:2',3'-]phenazine = dppn), among which are novel. Octahedral geometry of the complexes with a RuNCl core was evident from the crystal structure of . showed an MLCT absorption band in the 450-600 nm region, useful for aPDT performances. Further, optimum triplet excited state energy and excellent photostability of made them good photosensitizers for aPDT. demonstrated enhanced antimicrobial activity on visible-light exposure (400-700 nm, 10 J cm), confirmed using different antibacterial assays. Mechanistic studies revealed that inhibition of bacterial growth was due to the generation of oxidative stress (via NADH oxidation and ROS generation) upon treatment with , resulting in destruction of the bacterial wall. performed best killing performance against both Gram-negative () and Gram-positive () bacteria when exposed to light. , when coated on a polydimethylsiloxane (PDMS) disk, showed long-term reusability and durable antibiofilm properties. Molecular docking confirmed the efficient interaction of with FabH (regulates fatty acid biosynthesis of ) and PgaB (gives structural stability and helps biofilm formation of ), resulting in probable downregulation. studies with healthy Wistar rats confirmed the biocompatibility of . This study shows that these lead complexes () can be used as potent alternative antimicrobial agents in low concentrations toward bacterial eradication with photodynamic therapy (PDT).
抗生素耐药性带来的日益严峻的挑战,给对抗微生物感染和医疗器械上生物膜的形成带来了巨大的挑战。最近,抗菌光动力疗法(aPDT)作为一种替代疗法,正逐渐崭露头角。在这里,我们合成并表征了四个 Ru(II)-配合物,., [Ru(ph-tpy)(bpy)Cl]PF (), [Ru(ph-tpy)(dpq)Cl]PF (), [Ru(ph-tpy)(dppz)Cl]PF (), 和 [Ru(ph-tpy)(dppn)Cl]PF ()(其中 4′-苯基-2,2′:6′,2″-三联吡啶 = ph-tpy;2,2′-联吡啶 = bpy;二吡啶并[3,2-f:2′,3′-]喹喔啉 = dpq;二吡啶并[3,2-a:2′,3′-]吩嗪 = dppz;苯并[I]二吡啶并[3,2-a:2′,3′-]吩嗪 = dppn),其中 是新合成的。配合物的八面体几何结构,其 RuNCl 核在晶体结构中清晰可见。[Ru(ph-tpy)(bpy)Cl]PF ()的 MLCT 吸收带在 450-600nm 区域,这对 aPDT 性能很有用。此外,最优三重态激发态能量和良好的光稳定性使它们成为 aPDT 的良好光敏剂。[Ru(ph-tpy)(dpq)Cl]PF ()在可见光照射(400-700nm,10Jcm)下表现出增强的抗菌活性,这通过不同的抗菌试验得到了证实。机制研究表明,抑制细菌生长是由于与 处理后产生氧化应激(通过 NADH 氧化和 ROS 生成),导致细菌细胞壁的破坏。当暴露在光下时,[Ru(ph-tpy)(dppz)Cl]PF ()对革兰氏阴性()和革兰氏阳性()细菌表现出最佳的杀伤性能。当涂覆在聚二甲基硅氧烷(PDMS)盘上时,[Ru(ph-tpy)(dppn)Cl]PF ()显示出长期的可重复使用性和持久的抗生物膜性能。分子对接证实了 与 FabH(调节脂肪酸生物合成)和 PgaB(赋予结构稳定性并有助于生物膜形成)的有效相互作用,导致可能的下调。用健康的 Wistar 大鼠进行的 研究证实了 的生物相容性。这项研究表明,这些先导配合物()可以作为有效的替代抗菌剂,以低浓度用于细菌根除,并结合光动力疗法(PDT)。