Suppr超能文献

症状-BERT:增强电子健康记录临床记录中的癌症症状检测

Symptom-BERT: Enhancing Cancer Symptom Detection in EHR Clinical Notes.

机构信息

Department of Computer Science and Informatics (N.Z.), University of Iowa, Iowa, USA.

College of Nursing (A.A., S.G.W.), University of Iowa, Iowa, USA.

出版信息

J Pain Symptom Manage. 2024 Aug;68(2):190-198.e1. doi: 10.1016/j.jpainsymman.2024.05.015. Epub 2024 May 23.

Abstract

CONTEXT

Extracting cancer symptom documentation allows clinicians to develop highly individualized symptom prediction algorithms to deliver symptom management care. Leveraging advanced language models to detect symptom data in clinical narratives can significantly enhance this process.

OBJECTIVE

This study uses a pretrained large language model to detect and extract cancer symptoms in clinical notes.

METHODS

We developed a pretrained language model to identify cancer symptoms in clinical notes based on a clinical corpus from the Enterprise Data Warehouse for Research at a healthcare system in the Midwestern United States. This study was conducted in 4 phases: pretraining a Bio-Clinical BERT model on one million unlabeled clinical documents, fine-tuning Symptom-BERT for detecting 13 cancer symptom groups within 1112 annotated clinical notes, generating 180 synthetic clinical notes using ChatGPT-4 for external validation, and comparing the internal and external performance of Symptom-BERT against a non-pretrained version and six other BERT implementations.

RESULTS

The Symptom-BERT model effectively detected cancer symptoms in clinical notes. It achieved results with a micro-averaged F1-score of 0.933, an AUC of 0.929 internally, and 0.831 and 0.834 externally. Our analysis shows that physical symptoms, like Pruritus, are typically identified with higher performance than psychological symptoms, such as anxiety.

CONCLUSION

This study underscores the transformative potential of specialized pretraining on domain-specific data in boosting the performance of language models for medical applications. The Symptom-BERT model's exceptional efficacy in detecting cancer symptoms heralds a groundbreaking stride in patient-centered AI technologies, offering a promising path to elevate symptom management and cultivate superior patient self-care outcomes.

摘要

背景

提取癌症症状文档可以使临床医生开发高度个体化的症状预测算法,从而提供症状管理护理。利用先进的语言模型在临床叙述中检测症状数据可以极大地增强这一过程。

目的

本研究使用预训练的大型语言模型在临床记录中检测和提取癌症症状。

方法

我们开发了一个基于美国中西部医疗系统的企业数据仓库中的临床语料库的预训练语言模型,用于识别临床记录中的癌症症状。这项研究分为四个阶段:在一百万个未标记的临床文档上对生物临床 BERT 模型进行预训练,在 1112 个注释临床记录中对 Symptom-BERT 进行微调以检测 13 个癌症症状组,使用 ChatGPT-4 生成 180 个合成临床记录进行外部验证,并比较 Symptom-BERT 的内部和外部性能与非预训练版本和六个其他 BERT 实现的性能。

结果

Symptom-BERT 模型有效地在临床记录中检测到癌症症状。它的内部微平均 F1 得分为 0.933,AUC 为 0.929,外部微平均 F1 得分为 0.831 和 0.834。我们的分析表明,身体症状,如瘙痒,通常比心理症状,如焦虑,识别性能更高。

结论

这项研究强调了在特定领域数据上进行专门预训练对提高语言模型在医疗应用中的性能的变革潜力。Symptom-BERT 模型在检测癌症症状方面的卓越功效预示着以患者为中心的人工智能技术的突破性进展,为提升症状管理和培养卓越的患者自我护理成果开辟了一条有希望的道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验