Suppr超能文献

用于精神分裂症分类的机器学习模型的外部验证

External Validation of a Machine Learning Model for Schizophrenia Classification.

作者信息

He Yupeng, Sakuma Kenji, Kishi Taro, Li Yuanying, Matsunaga Masaaki, Tanihara Shinichi, Iwata Nakao, Ota Atsuhiko

机构信息

Department of Public Health, Fujita Health University School of Medicine, Toyoake 470-1192, Japan.

Department of Psychiatry, Fujita Health University School of Medicine, Toyoake 470-1192, Japan.

出版信息

J Clin Med. 2024 May 17;13(10):2970. doi: 10.3390/jcm13102970.

Abstract

Excellent generalizability is the precondition for the widespread practical implementation of machine learning models. In our previous study, we developed the schizophrenia classification model (SZ classifier) to identify potential schizophrenia patients in the Japanese population. The SZ classifier has exhibited impressive performance during internal validation. However, ensuring the robustness and generalizability of the SZ classifier requires external validation across independent sample sets. In this study, we aimed to present an external validation of the SZ classifier using outpatient data. The SZ classifier was trained by using online survey data, which incorporate demographic, health-related, and social comorbidity features. External validation was conducted using an outpatient sample set which is independent from the sample set during the model development phase. The model performance was assessed based on the sensitivity and misclassification rates for schizophrenia, bipolar disorder, and major depression patients. The SZ classifier demonstrated a sensitivity of 0.75 when applied to schizophrenia patients. The misclassification rates were 59% and 55% for bipolar disorder and major depression patients, respectively. The SZ classifier currently encounters challenges in accurately determining the presence or absence of schizophrenia at the individual level. Prior to widespread practical implementation, enhancements are necessary to bolster the accuracy and diminish the misclassification rates. Despite the current limitations of the model, such as poor specificity for certain psychiatric disorders, there is potential for improvement if including multiple types of psychiatric disorders during model development.

摘要

出色的可推广性是机器学习模型广泛实际应用的前提条件。在我们之前的研究中,我们开发了精神分裂症分类模型(SZ分类器),以识别日本人群中的潜在精神分裂症患者。SZ分类器在内部验证期间表现出了令人印象深刻的性能。然而,要确保SZ分类器的稳健性和可推广性,需要在独立样本集上进行外部验证。在本研究中,我们旨在使用门诊数据对SZ分类器进行外部验证。SZ分类器是通过使用在线调查数据进行训练的,这些数据包含人口统计学、健康相关和社会共病特征。外部验证使用的门诊样本集与模型开发阶段的样本集独立。基于精神分裂症、双相情感障碍和重度抑郁症患者的敏感性和错误分类率对模型性能进行评估。SZ分类器应用于精神分裂症患者时的敏感性为0.75。双相情感障碍和重度抑郁症患者的错误分类率分别为59%和55%。SZ分类器目前在个体层面准确判断精神分裂症的有无方面面临挑战。在广泛实际应用之前,有必要进行改进以提高准确性并降低错误分类率。尽管该模型目前存在局限性,例如对某些精神疾病的特异性较差,但如果在模型开发过程中纳入多种类型的精神疾病,仍有改进的潜力。

相似文献

1
External Validation of a Machine Learning Model for Schizophrenia Classification.
J Clin Med. 2024 May 17;13(10):2970. doi: 10.3390/jcm13102970.
2
Generalizability of machine learning for classification of schizophrenia based on resting-state functional MRI data.
Hum Brain Mapp. 2020 Jan;41(1):172-184. doi: 10.1002/hbm.24797. Epub 2019 Oct 1.
3
Machine Learning-Based Electroencephalographic Phenotypes of Schizophrenia and Major Depressive Disorder.
Front Psychiatry. 2021 Oct 13;12:745458. doi: 10.3389/fpsyt.2021.745458. eCollection 2021.
5
6
Classification of Schizophrenia by Combination of Brain Effective and Functional Connectivity.
Front Neurosci. 2021 Jun 3;15:651439. doi: 10.3389/fnins.2021.651439. eCollection 2021.
7
A self-learned decomposition and classification model for schizophrenia diagnosis.
Comput Methods Programs Biomed. 2021 Nov;211:106450. doi: 10.1016/j.cmpb.2021.106450. Epub 2021 Oct 2.
8
Diagnostic specificity of neurophysiological endophenotypes in schizophrenia and bipolar disorder.
Schizophr Bull. 2013 Nov;39(6):1219-29. doi: 10.1093/schbul/sbs093. Epub 2012 Aug 27.
9
Sparse deep neural networks on imaging genetics for schizophrenia case-control classification.
Hum Brain Mapp. 2021 Jun 1;42(8):2556-2568. doi: 10.1002/hbm.25387. Epub 2021 Mar 16.

本文引用的文献

3
Physical, Psychiatric, and Social Comorbidities of Individuals with Schizophrenia Living in the Community in Japan.
Int J Environ Res Public Health. 2023 Feb 28;20(5):4336. doi: 10.3390/ijerph20054336.
4
Application of Machine Learning to Diagnostics of Schizophrenia Patients Based on Event-Related Potentials.
Diagnostics (Basel). 2023 Jan 30;13(3):509. doi: 10.3390/diagnostics13030509.
6
Impact of Major Depressive Disorder on Comorbidities: A Systematic Literature Review.
J Clin Psychiatry. 2022 Oct 19;83(6):21r14328. doi: 10.4088/JCP.21r14328.
7
Loneliness and Increased Hazardous Alcohol Use: Data from a Nationwide Internet Survey with 1-Year Follow-Up.
Int J Environ Res Public Health. 2022 Sep 24;19(19):12086. doi: 10.3390/ijerph191912086.
9
Machine learning for prediction of schizophrenia using genetic and demographic factors in the UK biobank.
Schizophr Res. 2022 Aug;246:156-164. doi: 10.1016/j.schres.2022.06.006. Epub 2022 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验