Suppr超能文献

人工智能时代的计算机化学实验:从量子化学到机器学习再回归

In Silico Chemical Experiments in the Age of AI: From Quantum Chemistry to Machine Learning and Back.

作者信息

Aldossary Abdulrahman, Campos-Gonzalez-Angulo Jorge Arturo, Pablo-García Sergio, Leong Shi Xuan, Rajaonson Ella Miray, Thiede Luca, Tom Gary, Wang Andrew, Avagliano Davide, Aspuru-Guzik Alán

机构信息

Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.

Department of Computer Science, University of Toronto, 40 St. George Street, Toronto, ON, M5S 2E4, Canada.

出版信息

Adv Mater. 2024 Jul;36(30):e2402369. doi: 10.1002/adma.202402369. Epub 2024 May 25.

Abstract

Computational chemistry is an indispensable tool for understanding molecules and predicting chemical properties. However, traditional computational methods face significant challenges due to the difficulty of solving the Schrödinger equations and the increasing computational cost with the size of the molecular system. In response, there has been a surge of interest in leveraging artificial intelligence (AI) and machine learning (ML) techniques to in silico experiments. Integrating AI and ML into computational chemistry increases the scalability and speed of the exploration of chemical space. However, challenges remain, particularly regarding the reproducibility and transferability of ML models. This review highlights the evolution of ML in learning from, complementing, or replacing traditional computational chemistry for energy and property predictions. Starting from models trained entirely on numerical data, a journey set forth toward the ideal model incorporating or learning the physical laws of quantum mechanics. This paper also reviews existing computational methods and ML models and their intertwining, outlines a roadmap for future research, and identifies areas for improvement and innovation. Ultimately, the goal is to develop AI architectures capable of predicting accurate and transferable solutions to the Schrödinger equation, thereby revolutionizing in silico experiments within chemistry and materials science.

摘要

计算化学是理解分子和预测化学性质不可或缺的工具。然而,由于求解薛定谔方程的困难以及随着分子系统规模增大计算成本不断增加,传统计算方法面临重大挑战。作为回应,利用人工智能(AI)和机器学习(ML)技术进行计算机模拟实验的兴趣激增。将AI和ML整合到计算化学中可提高化学空间探索的可扩展性和速度。然而,挑战依然存在,尤其是在ML模型的可重复性和可转移性方面。本综述着重介绍了机器学习在学习、补充或取代传统计算化学进行能量和性质预测方面的发展历程。从完全基于数值数据训练的模型出发,朝着纳入或学习量子力学物理定律的理想模型迈进。本文还回顾了现有的计算方法和ML模型及其相互交织的情况,勾勒了未来研究的路线图,并确定了改进和创新的领域。最终目标是开发能够预测薛定谔方程准确且可转移解的AI架构,从而彻底改变化学和材料科学中的计算机模拟实验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验