Wang Kai, Yu Bo, Lin Changqing, Yao Ruohe, Yu Huangzhong, Wang Hong
Guangdong Provincial Engineering Laboratory for Wide Bandgap Semiconductor Materials and Devices, School of Electronics and Information Engineering, South China University of Technology, Guangzhou, 510640, China.
Engineering Research Centre for Optoelectronics of Guangdong Province, School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China.
Small. 2024 Oct;20(42):e2403494. doi: 10.1002/smll.202403494. Epub 2024 Jun 11.
The properties of an interface at the hole transport layer (HTL)/perovskite layer are crucial for the performance and stability of perovskite solar cells (PVSCs), especially the buried interface between HTL and perovskite layer. Here, a molecular named potassium 1-trifluoroboratomethylpiperidine (3FPIP) assistant-modified perovskite bottom interface strategy is proposed to improve the charge transfer capability and balances energy level between HTL and perovskite. BF in the 3FPIP molecule interacts with undercoordinated Pb to passivate iodine vacancies and enhance PVSCs performance. Furthermore, the infiltration of K ions into perovskite molecules enhances the crystallinity and stability of perovskite. Therefore, the PVSCs with the buried interface treatment exhibit a champion performance of 24.6%. More importantly, the corresponding devices represent outstanding ambient stability, remaining at 92% of the initial efficiency after 1200 h. This work provides a new method of buried interface engineering with functional group synergy.
空穴传输层(HTL)/钙钛矿层界面的性质对于钙钛矿太阳能电池(PVSCs)的性能和稳定性至关重要,尤其是HTL与钙钛矿层之间的掩埋界面。在此,提出了一种名为1-三氟硼甲基哌啶钾(3FPIP)的分子辅助修饰钙钛矿底部界面策略,以提高电荷转移能力并平衡HTL与钙钛矿之间的能级。3FPIP分子中的BF与配位不足的Pb相互作用,以钝化碘空位并提高PVSCs的性能。此外,K离子渗透到钙钛矿分子中可提高钙钛矿的结晶度和稳定性。因此,经过掩埋界面处理的PVSCs表现出24.6%的最佳性能。更重要的是,相应的器件具有出色的环境稳定性,在1200小时后仍保持初始效率的92%。这项工作提供了一种具有官能团协同作用的掩埋界面工程新方法。