Suppr超能文献

将机器学习与高内涵成像相结合以推断鼠伤寒沙门氏菌分离株对环丙沙星的敏感性。

Combining machine learning with high-content imaging to infer ciprofloxacin susceptibility in isolates of Salmonella Typhimurium.

作者信息

Tran Tuan-Anh, Sridhar Sushmita, Reece Stephen T, Lunguya Octavie, Jacobs Jan, Van Puyvelde Sandra, Marks Florian, Dougan Gordon, Thomson Nicholas R, Nguyen Binh T, Bao Pham The, Baker Stephen

机构信息

The Department of Medicine, University of Cambridge, Cambridge, UK.

Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.

出版信息

Nat Commun. 2024 Jun 13;15(1):5074. doi: 10.1038/s41467-024-49433-4.

Abstract

Antimicrobial resistance (AMR) is a growing public health crisis that requires innovative solutions. Current susceptibility testing approaches limit our ability to rapidly distinguish between antimicrobial-susceptible and -resistant organisms. Salmonella Typhimurium (S. Typhimurium) is an enteric pathogen responsible for severe gastrointestinal illness and invasive disease. Despite widespread resistance, ciprofloxacin remains a common treatment for Salmonella infections, particularly in lower-resource settings, where the drug is given empirically. Here, we exploit high-content imaging to generate deep phenotyping of S. Typhimurium isolates longitudinally exposed to increasing concentrations of ciprofloxacin. We apply machine learning algorithms to the imaging data and demonstrate that individual isolates display distinct growth and morphological characteristics that cluster by time point and susceptibility to ciprofloxacin, which occur independently of ciprofloxacin exposure. Using a further set of S. Typhimurium clinical isolates, we find that machine learning classifiers can accurately predict ciprofloxacin susceptibility without exposure to it or any prior knowledge of resistance phenotype. These results demonstrate the principle of using high-content imaging with machine learning algorithms to predict drug susceptibility of clinical bacterial isolates. This technique may be an important tool in understanding the morphological impact of antimicrobials on the bacterial cell to identify drugs with new modes of action.

摘要

抗菌药物耐药性(AMR)是一个日益严重的公共卫生危机,需要创新的解决方案。当前的药敏试验方法限制了我们快速区分抗菌药物敏感和耐药微生物的能力。鼠伤寒沙门氏菌(S. Typhimurium)是一种肠道病原体,可导致严重的胃肠道疾病和侵袭性疾病。尽管耐药情况普遍存在,但环丙沙星仍是治疗沙门氏菌感染的常用药物,特别是在资源匮乏地区,该药物通常是经验性给药。在此,我们利用高内涵成像技术对长期暴露于浓度不断增加的环丙沙星的鼠伤寒沙门氏菌分离株进行深度表型分析。我们将机器学习算法应用于成像数据,并证明单个分离株显示出不同的生长和形态特征,这些特征按时间点和对环丙沙星的敏感性聚类,且这些特征的出现与环丙沙星暴露无关。使用另一组鼠伤寒沙门氏菌临床分离株,我们发现机器学习分类器可以在不接触环丙沙星或无任何耐药表型先验知识的情况下准确预测环丙沙星敏感性。这些结果证明了使用高内涵成像与机器学习算法预测临床细菌分离株药敏性的原理。这项技术可能是理解抗菌药物对细菌细胞形态影响以识别具有新作用模式药物的重要工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed1/11176356/1610b61f06d2/41467_2024_49433_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验