Suppr超能文献

开发和验证基于知识的人工智能评估系统,用于学习耳鼻喉科临床核心医学知识。

Developing and validating a knowledge-based AI assessment system for learning clinical core medical knowledge in otolaryngology.

机构信息

Department of Information and Learning Technology, National University of Tainan, Tainan, Taiwan.

Department of Otolaryngology, Cathay General Hospital, Taipei, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; School of Medicine, National Tsing Hua University, Hsinchu, Taiwan.

出版信息

Comput Biol Med. 2024 Aug;178:108765. doi: 10.1016/j.compbiomed.2024.108765. Epub 2024 Jun 18.

Abstract

BACKGROUND

Clinical core medical knowledge (CCMK) learning is essential for medical trainees. Adaptive assessment systems can facilitate self-learning, but extracting experts' CCMK is challenging, especially using modern data-driven artificial intelligence (AI) approaches (e.g., deep learning).

OBJECTIVES

This study aims to develop a multi-expert knowledge-aggregated adaptive assessment scheme (MEKAS) using knowledge-based AI approaches to facilitate the learning of CCMK in otolaryngology (CCMK-OTO) and validate its effectiveness through a one-month training program for CCMK-OTO education at a tertiary referral hospital.

METHODS

The MEKAS utilized the repertory grid technique and case-based reasoning to aggregate experts' knowledge to construct a representative CCMK base, thereby enabling adaptive assessment for CCMK-OTO training. The effects of longitudinal training were compared between the experimental group (EG) and the control group (CG). Both groups received a normal training program (routine meeting, outpatient/operation room teaching, and classroom teaching), while EG received MEKAS for self-learning. The EG comprised 22 UPGY trainees (6 postgraduate [PGY] and 16 undergraduate [UGY] trainees) and 8 otolaryngology residents (ENT-R); the CG comprised 24 UPGY trainees (8 PGY and 16 UGY trainees). The training effectiveness was compared through pre- and post-test CCMK-OTO scores, and user experiences were evaluated using a technology acceptance model-based questionnaire.

RESULTS

Both UPGY (z = -3.976, P < 0.001) and ENT-R (z = -2.038, P = 0.042) groups in EG exhibited significant improvements in their CCMK-OTO scores, while UPGY in CG did not (z = -1.204, P = 0.228). The UPGY group in EG also demonstrated a substantial improvement compared to the UPGY group in CG (z = -4.943, P < 0.001). The EG participants were highly satisfied with the MEKAS system concerning self-learning assistance, adaptive testing, perceived satisfaction, intention to use, perceived usefulness, perceived ease of use, and perceived enjoyment, rating it between an overall average of 3.8 and 4.1 out of 5.0 on all scales.

CONCLUSIONS

The MEKAS system facilitates CCMK-OTO learning and provides an efficient knowledge aggregation scheme that can be applied to other medical subjects to efficiently build adaptive assessment systems for CCMK learning. Larger-scale validation across diverse institutions and settings is warranted further to assess MEKAS's scalability, generalizability, and long-term impact.

摘要

背景

临床核心医学知识(CCMK)的学习对于医学实习生来说至关重要。自适应评估系统可以促进自我学习,但提取专家的 CCMK 具有挑战性,尤其是使用现代数据驱动的人工智能(AI)方法(例如深度学习)。

目的

本研究旨在使用基于知识的 AI 方法开发一种多专家知识聚合自适应评估方案(MEKAS),以促进耳鼻喉科(CCMK-OTO)的 CCMK 学习,并通过在一家三级转诊医院进行为期一个月的 CCMK-OTO 教育的培训计划来验证其有效性。

方法

MEKAS 使用 repertory grid 技术和基于案例的推理来聚合专家的知识,以构建一个具有代表性的 CCMK 基础,从而能够对 CCMK-OTO 培训进行自适应评估。通过比较实验组(EG)和对照组(CG)的纵向培训效果来评估培训效果。两组均接受常规培训计划(例会、门诊/手术室教学和课堂教学),而 EG 则接受 MEKAS 进行自学。EG 由 22 名 UPGY 受训者(6 名研究生[PGY]和 16 名本科生[UGY]受训者)和 8 名耳鼻喉科住院医师(ENT-R)组成;CG 由 24 名 UPGY 受训者(8 名 PGY 和 16 名 UGY 受训者)组成。通过 CCMK-OTO 测试的前测和后测分数比较培训效果,使用基于技术接受模型的问卷评估用户体验。

结果

EG 中的 UPGY(z=-3.976,P<0.001)和 ENT-R(z=-2.038,P=0.042)组的 CCMK-OTO 分数均显著提高,而 CG 中的 UPGY 组则没有(z=-1.204,P=0.228)。EG 中的 UPGY 组与 CG 中的 UPGY 组相比也有了显著的提高(z=-4.943,P<0.001)。EG 参与者对 MEKAS 系统在自学辅助、自适应测试、感知满意度、使用意愿、感知有用性、感知易用性和感知趣味性方面的满意度非常高,在所有量表上的评分均在 3.8 到 4.1 之间(满分 5.0)。

结论

MEKAS 系统促进了 CCMK-OTO 学习,并提供了一种高效的知识聚合方案,可应用于其他医学科目,以有效地构建 CCMK 学习的自适应评估系统。需要在不同的机构和环境中进行更大规模的验证,以进一步评估 MEKAS 的可扩展性、通用性和长期影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验