Uslu Safak C, Lee Uk-Jae, Tavakolpour Soheil, Abousaway Omar, Nili Ali, Bass Lily, Purwar Pragallabh, Lacson Edward, Berland Lea, Kuhnast Adrien, Clark Louise M, Picard Delia, Rakhshandehroo Taha, Mantri Shreya R, Moravej Heydar, Rashidian Mohammad
Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States.
Medical Scientist Training Program, Hacettepe University Faculty of Medicine, Ankara 06230, Turkey.
ACS Pharmacol Transl Sci. 2024 May 24;7(6):1746-1757. doi: 10.1021/acsptsci.3c00268. eCollection 2024 Jun 14.
T cells play a crucial role in antitumor immune responses and the clearance of infected cells. They identify their targets through the binding of T-cell receptors (TCRs) to peptide-major histocompatibility complex (pMHC) molecules present in cancer cells, infected cells, and antigen-presenting cells. This interaction is often weak, requiring multimeric pMHC molecules to enhance the avidity for identifying antigen-specific T cells. Current exchangeable pMHC-I tetramerization methods may overlook TCRs recognizing less stable yet immunogenic peptides. applications targeting antigen-specific T cells demand the genetic synthesis of a pMHC fusion for each unique peptide antigen, which poses a significant challenge. To address these challenges, we developed a sortase and click chemistry-mediated approach for generating stable pMHC molecules. Leveraging sortase technology, we introduced an azide click-handle near the N-terminus of β2m, proximal to the MHC-peptide-binding groove. Simultaneously, the peptide was engineered with a multi glycine linker and a C-terminal alkyne click-handle. Azide-alkyne click reactions efficiently immobilized the peptide onto the MHC molecule, providing a versatile and efficient method for pMHC generation. The resulting peptide-clicked-MHC specifically binds to its cognate TCR and remains stable for over 3 months at 4 °C in the absence of any additional free peptide. The stability of the pMHC and its affinity to cognate TCRs are influenced by the linker's nature and length. Multi glycine linkers outperform poly(ethylene glycol) (PEG) linkers in this regard. This technology expands the toolkit for identifying and targeting antigen-specific T cells, enhancing our understanding of cancer-specific immune responses, and has the potential to streamline the development of personalized immunotherapies.
T细胞在抗肿瘤免疫反应和清除受感染细胞中发挥着关键作用。它们通过T细胞受体(TCR)与癌细胞、受感染细胞和抗原呈递细胞中存在的肽-主要组织相容性复合体(pMHC)分子结合来识别其靶标。这种相互作用通常较弱,需要多聚体pMHC分子来增强识别抗原特异性T细胞的亲和力。当前可交换的pMHC-I四聚体化方法可能会忽略识别不太稳定但具有免疫原性的肽的TCR。针对抗原特异性T细胞的应用需要针对每种独特的肽抗原进行pMHC融合的基因合成,这带来了重大挑战。为了应对这些挑战,我们开发了一种分选酶和点击化学介导的方法来生成稳定的pMHC分子。利用分选酶技术,我们在β2m的N末端附近、靠近MHC-肽结合槽的位置引入了一个叠氮化物点击手柄。同时,对肽进行工程改造,使其带有多甘氨酸接头和C末端炔烃点击手柄。叠氮化物-炔烃点击反应有效地将肽固定在MHC分子上,为pMHC的生成提供了一种通用且高效的方法。所得的肽点击MHC特异性结合其同源TCR,并且在4°C下在没有任何额外游离肽的情况下可保持稳定超过3个月。pMHC的稳定性及其与同源TCR的亲和力受接头的性质和长度影响。在这方面,多甘氨酸接头优于聚乙二醇(PEG)接头。这项技术扩展了用于识别和靶向抗原特异性T细胞的工具包,增强了我们对癌症特异性免疫反应的理解,并有可能简化个性化免疫疗法的开发。