Suppr超能文献

有拥抱潜力的人类的 HUG 分类法。

A HUG taxonomy of humans with potential in human-robot hugs.

机构信息

Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai, 201210, China.

State Key Laboratory of Intelligent Autonomous Systems, Shanghai, 201210, China.

出版信息

Sci Rep. 2024 Jun 20;14(1):14212. doi: 10.1038/s41598-024-64825-8.

Abstract

Humans can easily perform various types of hugs in human contact and affection experience. With the prevalence of robots in social applications, they would be expected to possess the capability of hugs as humans do. However, it is still not an easy task for robots, considering the complex force and spatial constraints of robot hugs. In this work, we propose the HUG taxonomy, which distinguishes between different hugging patterns based on human demonstrations and prior knowledge. In this taxonomy, hugs are arranged according to (1) hugging tightness, (2) hugging style, and (3) bilateral coordination, resulting in 16 different hug types. We then further study the hug type preference of humans in different scenarios and roles. Furthermore, we propose a rule-based classification system to validate the potential of this taxonomy in human-robot hugs based on a humanoid robot with an E-skin of contact sensation. The HUG taxonomy could provide human hugging behavior information in advance, facilitating the action control of humanoid robots. We believe the results of our work can benefit future studies on human-robot hugging interactions.

摘要

人类在人际互动和情感体验中可以轻松进行各种类型的拥抱。随着机器人在社交应用中的普及,人们期望它们能够像人类一样具备拥抱的能力。然而,考虑到机器人拥抱的复杂力量和空间限制,这对机器人来说仍然不是一件容易的事。在这项工作中,我们提出了 HUG 分类法,该分类法根据人类演示和先验知识区分了不同的拥抱模式。在这个分类法中,拥抱根据(1)拥抱的紧密度,(2)拥抱的风格,和(3)双边协调来排列,总共产生 16 种不同的拥抱类型。然后,我们进一步研究了人类在不同场景和角色中对拥抱类型的偏好。此外,我们提出了一个基于规则的分类系统,该系统基于具有接触感知 E-皮肤的人形机器人,验证了该分类法在人机拥抱中的潜在应用。HUG 分类法可以提前提供人类拥抱行为信息,从而促进人形机器人的动作控制。我们相信我们工作的结果可以有益于未来的人机拥抱交互研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd5e/11190144/37b251154ded/41598_2024_64825_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验