Suppr超能文献

基于量子力学的药物发现策略:在药物设计中寻找新挑战的步伐。

Quantum mechanical-based strategies in drug discovery: Finding the pace to new challenges in drug design.

机构信息

Pharmacelera, Parc Científic de Barcelona (PCB), Baldiri Reixac 4-8, 08028 Barcelona, Spain.

Pharmacelera, Parc Científic de Barcelona (PCB), Baldiri Reixac 4-8, 08028 Barcelona, Spain; Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Universitat de Barcelona, Institut de Biomedicina (IBUB), 08921 Santa Coloma de Gramenet, Spain; Institut de Biomedicina (IBUB), 08921 Santa Coloma de Gramenet, Spain.

出版信息

Curr Opin Struct Biol. 2024 Aug;87:102870. doi: 10.1016/j.sbi.2024.102870. Epub 2024 Jun 23.

Abstract

The expansion of the chemical space to tangible libraries containing billions of synthesizable molecules opens exciting opportunities for drug discovery, but also challenges the power of computer-aided drug design to prioritize the best candidates. This directly hits quantum mechanics (QM) methods, which provide chemically accurate properties, but subject to small-sized systems. Preserving accuracy while optimizing the computational cost is at the heart of many efforts to develop high-quality, efficient QM-based strategies, reflected in refined algorithms and computational approaches. The design of QM-tailored physics-based force fields and the coupling of QM with machine learning, in conjunction with the computing performance of supercomputing resources, will enhance the ability to use these methods in drug discovery. The challenge is formidable, but we will undoubtedly see impressive advances that will define a new era.

摘要

化学空间的扩展为包含数十亿个可合成分子的有形文库带来了激动人心的药物发现机会,但也对计算机辅助药物设计的能力提出了挑战,使其难以确定最佳候选药物。这直接影响到量子力学(QM)方法,这些方法提供了化学上准确的性质,但仅限于小尺寸系统。在保持准确性的同时优化计算成本是开发高质量、高效基于 QM 策略的核心,这反映在改进的算法和计算方法中。专门设计的基于 QM 的物理力场以及 QM 与机器学习的结合,再加上超级计算资源的计算性能,将提高在药物发现中使用这些方法的能力。挑战是巨大的,但我们无疑将看到令人印象深刻的进展,这将定义一个新时代。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验