Pal Tanay, Ghosh Premananda, Islam Minhajul, Guin Srimanta, Maji Suman, Dutta Suparna, Das Jayabrata, Ge Haibo, Maiti Debabrata
Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, India.
Nat Commun. 2024 Jun 25;15(1):5370. doi: 10.1038/s41467-024-49359-x.
Dehydrogenation chemistry has long been established as a fundamental aspect of organic synthesis, commonly encountered in carbonyl compounds. Transition metal catalysis revolutionized it, with strategies like transfer-dehydrogenation, single electron transfer and C-H activation. These approaches, extended to multiple dehydrogenations, can lead to aromatization. Dehydrogenative transformations of aliphatic carboxylic acids pose challenges, yet engineered ligands and metal catalysis can initiate dehydrogenation via C-H activation, though outcomes vary based on substrate structures. Herein, we have developed a catalytic system enabling cyclohexane carboxylic acids to undergo multifold C-H activation to furnish olefinated arenes, bypassing lactone formation. This showcases unique reactivity in aliphatic carboxylic acids, involving tandem dehydrogenation-olefination-decarboxylation-aromatization sequences, validated by control experiments and key intermediate isolation. For cyclopentane carboxylic acids, reluctant to aromatization, the catalytic system facilitates controlled dehydrogenation, providing difunctionalized cyclopentenes through tandem dehydrogenation-olefination-decarboxylation-allylic acyloxylation sequences. This transformation expands carboxylic acids into diverse molecular entities with wide applications, underscoring its importance.
脱氢化学长期以来一直被视为有机合成的一个基本方面,在羰基化合物中普遍存在。过渡金属催化彻底改变了这一领域,出现了诸如转移脱氢、单电子转移和C-H活化等策略。这些方法扩展到多次脱氢后,可导致芳构化。脂肪族羧酸的脱氢转化面临挑战,然而,经过设计的配体和金属催化可以通过C-H活化引发脱氢,不过其结果会因底物结构而异。在此,我们开发了一种催化体系,使环己烷羧酸能够进行多次C-H活化,以生成烯基化芳烃,避免内酯的形成。这展示了脂肪族羧酸独特的反应性,涉及串联脱氢-烯基化-脱羧-芳构化序列,这一点通过对照实验和关键中间体的分离得到了验证。对于难以进行芳构化的环戊烷羧酸,该催化体系促进可控脱氢,通过串联脱氢-烯基化-脱羧-烯丙基酰氧基化序列提供双官能化环戊烯。这种转化将羧酸拓展为具有广泛应用的多种分子实体,凸显了其重要性。