Suppr超能文献

通过多重C-H活化实现环烷基羧酸的串联脱氢-烯烃化-脱羧反应

Tandem dehydrogenation-olefination-decarboxylation of cycloalkyl carboxylic acids via multifold C-H activation.

作者信息

Pal Tanay, Ghosh Premananda, Islam Minhajul, Guin Srimanta, Maji Suman, Dutta Suparna, Das Jayabrata, Ge Haibo, Maiti Debabrata

机构信息

Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.

IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, India.

出版信息

Nat Commun. 2024 Jun 25;15(1):5370. doi: 10.1038/s41467-024-49359-x.

Abstract

Dehydrogenation chemistry has long been established as a fundamental aspect of organic synthesis, commonly encountered in carbonyl compounds. Transition metal catalysis revolutionized it, with strategies like transfer-dehydrogenation, single electron transfer and C-H activation. These approaches, extended to multiple dehydrogenations, can lead to aromatization. Dehydrogenative transformations of aliphatic carboxylic acids pose challenges, yet engineered ligands and metal catalysis can initiate dehydrogenation via C-H activation, though outcomes vary based on substrate structures. Herein, we have developed a catalytic system enabling cyclohexane carboxylic acids to undergo multifold C-H activation to furnish olefinated arenes, bypassing lactone formation. This showcases unique reactivity in aliphatic carboxylic acids, involving tandem dehydrogenation-olefination-decarboxylation-aromatization sequences, validated by control experiments and key intermediate isolation. For cyclopentane carboxylic acids, reluctant to aromatization, the catalytic system facilitates controlled dehydrogenation, providing difunctionalized cyclopentenes through tandem dehydrogenation-olefination-decarboxylation-allylic acyloxylation sequences. This transformation expands carboxylic acids into diverse molecular entities with wide applications, underscoring its importance.

摘要

脱氢化学长期以来一直被视为有机合成的一个基本方面,在羰基化合物中普遍存在。过渡金属催化彻底改变了这一领域,出现了诸如转移脱氢、单电子转移和C-H活化等策略。这些方法扩展到多次脱氢后,可导致芳构化。脂肪族羧酸的脱氢转化面临挑战,然而,经过设计的配体和金属催化可以通过C-H活化引发脱氢,不过其结果会因底物结构而异。在此,我们开发了一种催化体系,使环己烷羧酸能够进行多次C-H活化,以生成烯基化芳烃,避免内酯的形成。这展示了脂肪族羧酸独特的反应性,涉及串联脱氢-烯基化-脱羧-芳构化序列,这一点通过对照实验和关键中间体的分离得到了验证。对于难以进行芳构化的环戊烷羧酸,该催化体系促进可控脱氢,通过串联脱氢-烯基化-脱羧-烯丙基酰氧基化序列提供双官能化环戊烯。这种转化将羧酸拓展为具有广泛应用的多种分子实体,凸显了其重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0e8/11199700/d3068d219ab3/41467_2024_49359_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验