Suppr超能文献

基于数组自适应归一化核加权模型的差异甲基化区域检测

Differential methylation region detection via an array-adaptive normalized kernel-weighted model.

机构信息

Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO, United States of America.

出版信息

PLoS One. 2024 Jun 28;19(6):e0306036. doi: 10.1371/journal.pone.0306036. eCollection 2024.

Abstract

A differentially methylated region (DMR) is a genomic region that has significantly different methylation patterns between biological conditions. Identifying DMRs between different biological conditions is critical for developing disease biomarkers. Although methods for detecting DMRs in microarray data have been introduced, developing methods with high precision, recall, and accuracy in determining the true length of DMRs remains a challenge. In this study, we propose a normalized kernel-weighted model to account for similar methylation profiles using the relative probe distance from "nearby" CpG sites. We also extend this model by proposing an array-adaptive version in attempt to account for the differences in probe spacing between Illumina's Infinium 450K and EPIC bead array respectively. We also study the asymptotic results of our proposed statistic. We compare our approach with a popular DMR detection method via simulation studies under large and small treatment effect settings. We also discuss the susceptibility of our method in detecting the true length of the DMRs under these two settings. Lastly, we demonstrate the biological usefulness of our method when combined with pathway analysis methods on oral cancer data. We have created an R package called idDMR, downloadable from GitHub repository with link: https://github.com/DanielAlhassan/idDMR, that allows for the convenient implementation of our array-adaptive DMR method.

摘要

差异甲基化区域(DMR)是指在不同生物学条件下甲基化模式存在显著差异的基因组区域。鉴定不同生物学条件下的 DMR 对于开发疾病生物标志物至关重要。尽管已经介绍了用于检测微阵列数据中 DMR 的方法,但开发具有高精度、高召回率和准确确定 DMR 真实长度的方法仍然是一个挑战。在本研究中,我们提出了一种归一化核加权模型,该模型使用来自“附近”CpG 位点的相对探针距离来解释相似的甲基化谱。我们还通过提出一个数组自适应版本来扩展这个模型,以分别尝试解释 Illumina 的 Infinium 450K 和 EPIC 珠阵列之间探针间距的差异。我们还研究了我们提出的统计量的渐近结果。我们通过在大处理效果和小处理效果设置下的模拟研究,将我们的方法与一种流行的 DMR 检测方法进行了比较。我们还讨论了在这两种设置下,我们的方法检测 DMR 真实长度的敏感性。最后,我们展示了将我们的方法与口腔癌数据的通路分析方法相结合的生物学有用性。我们创建了一个名为 idDMR 的 R 包,可从 GitHub 存储库下载,链接为:https://github.com/DanielAlhassan/idDMR,该包允许方便地实现我们的数组自适应 DMR 方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1411/11213316/f1a6e52ad7a2/pone.0306036.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验