Suppr超能文献

整合空间转录组学和批量 RNA-seq:通过图注意网络提高分辨率预测基因表达。

Integrating spatial transcriptomics and bulk RNA-seq: predicting gene expression with enhanced resolution through graph attention networks.

机构信息

Department of Computer Science, University of Central Florida, Orlando, FL 32816, United States.

Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX 77030, United States.

出版信息

Brief Bioinform. 2024 May 23;25(4). doi: 10.1093/bib/bbae316.

Abstract

Spatial transcriptomics data play a crucial role in cancer research, providing a nuanced understanding of the spatial organization of gene expression within tumor tissues. Unraveling the spatial dynamics of gene expression can unveil key insights into tumor heterogeneity and aid in identifying potential therapeutic targets. However, in many large-scale cancer studies, spatial transcriptomics data are limited, with bulk RNA-seq and corresponding Whole Slide Image (WSI) data being more common (e.g. TCGA project). To address this gap, there is a critical need to develop methodologies that can estimate gene expression at near-cell (spot) level resolution from existing WSI and bulk RNA-seq data. This approach is essential for reanalyzing expansive cohort studies and uncovering novel biomarkers that have been overlooked in the initial assessments. In this study, we present STGAT (Spatial Transcriptomics Graph Attention Network), a novel approach leveraging Graph Attention Networks (GAT) to discern spatial dependencies among spots. Trained on spatial transcriptomics data, STGAT is designed to estimate gene expression profiles at spot-level resolution and predict whether each spot represents tumor or non-tumor tissue, especially in patient samples where only WSI and bulk RNA-seq data are available. Comprehensive tests on two breast cancer spatial transcriptomics datasets demonstrated that STGAT outperformed existing methods in accurately predicting gene expression. Further analyses using the TCGA breast cancer dataset revealed that gene expression estimated from tumor-only spots (predicted by STGAT) provides more accurate molecular signatures for breast cancer sub-type and tumor stage prediction, and also leading to improved patient survival and disease-free analysis. Availability: Code is available at https://github.com/compbiolabucf/STGAT.

摘要

空间转录组学数据在癌症研究中起着至关重要的作用,为肿瘤组织中基因表达的空间组织提供了细致的理解。揭示基因表达的空间动态可以揭示肿瘤异质性的关键见解,并有助于确定潜在的治疗靶点。然而,在许多大型癌症研究中,空间转录组学数据有限,批量 RNA-seq 和相应的全切片图像(WSI)数据更为常见(例如 TCGA 项目)。为了解决这一差距,迫切需要开发能够从现有 WSI 和批量 RNA-seq 数据中以接近细胞(斑点)水平分辨率估计基因表达的方法。这种方法对于重新分析广阔的队列研究和发现初始评估中被忽视的新生物标志物至关重要。在这项研究中,我们提出了 STGAT(空间转录组学图注意网络),这是一种利用图注意网络(GAT)来辨别斑点之间空间依赖性的新方法。在空间转录组学数据上进行训练,STGAT 旨在以斑点级分辨率估计基因表达谱,并预测每个斑点是否代表肿瘤或非肿瘤组织,特别是在只有 WSI 和批量 RNA-seq 数据可用的患者样本中。对两个乳腺癌空间转录组学数据集的综合测试表明,STGAT 在准确预测基因表达方面优于现有方法。进一步使用 TCGA 乳腺癌数据集进行的分析表明,仅从肿瘤斑点(由 STGAT 预测)估计的基因表达为乳腺癌亚型和肿瘤分期预测提供了更准确的分子特征,并且还导致改善了患者生存和无病分析。可用性:代码可在 https://github.com/compbiolabucf/STGAT 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05c8/11221891/62b258746ce1/bbae316f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验