Wang Cheng, Wu Fei, Wang Fang, Chong Huan-Huan, Sun Haitao, Huang Peng, Xiao Yuyao, Yang Chun, Zeng Mengsu
Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China.
Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.
J Magn Reson Imaging. 2025 Mar;61(3):1428-1439. doi: 10.1002/jmri.29523. Epub 2024 Jul 12.
Hepatocellular carcinoma (HCC) has a poor prognosis, often characterized by microvascular invasion (MVI). Radiomics and habitat imaging offer potential for preoperative MVI assessment.
To identify MVI in HCC by habitat imaging, tumor radiomic analysis, and peritumor habitat-derived radiomic analysis.
Retrospective.
Three hundred eighteen patients (53 ± 11.42 years old; male = 276) with pathologically confirmed HCC (training:testing = 224:94).
FIELD STRENGTH/SEQUENCE: 1.5 T, T2WI (spin echo), and precontrast and dynamic T1WI using three-dimensional gradient echo sequence.
Clinical model, habitat model, single sequence radiomic models, the peritumor habitat-derived radiomic model, and the combined models were constructed for evaluating MVI. Follow-up clinical data were obtained by a review of medical records or telephone interviews.
Univariable and multivariable logistic regression, receiver operating characteristic (ROC) curve, calibration, decision curve, Delong test, K-M curves, log rank test. A P-value less than 0.05 (two sides) was considered to indicate statistical significance.
Habitat imaging revealed a positive correlation between the number of subregions and MVI probability. The Radiomic-Pre model demonstrated AUCs of 0.815 (95% CI: 0.752-0.878) and 0.708 (95% CI: 0.599-0.817) for detecting MVI in the training and testing cohorts, respectively. Similarly, the AUCs for MVI detection using Radiomic-HBP were 0.790 (95% CI: 0.724-0.855) for the training cohort and 0.712 (95% CI: 0.604-0.820) for the test cohort. Combination models exhibited improved performance, with the Radiomics + Habitat + Dilation + Habitat 2 + Clinical Model (Model 7) achieving the higher AUC than Model 1-4 and 6 (0.825 vs. 0.688, 0.726, 0.785, 0.757, 0.804, P = 0.013, 0.048, 0.035, 0.041, 0.039, respectively) in the testing cohort. High-risk patients (cutoff value >0.11) identified by this model showed shorter recurrence-free survival.
The combined model including tumor size, habitat imaging, radiomic analysis exhibited the best performance in predicting MVI, while also assessing prognostic risk.
3 TECHNICAL EFFICACY: Stage 2.
肝细胞癌(HCC)预后较差,常以微血管侵犯(MVI)为特征。放射组学和影像组学为术前MVI评估提供了可能。
通过影像组学、肿瘤放射组学分析及瘤周影像组学分析识别HCC中的MVI。
回顾性研究。
318例经病理证实的HCC患者(53±11.42岁;男性276例)(训练集:测试集=224:94)。
场强/序列:1.5T,T2加权成像(自旋回波),以及使用三维梯度回波序列的平扫和动态T1加权成像。
构建临床模型、影像组学模型、单序列放射组学模型、瘤周影像组学衍生模型及联合模型以评估MVI。通过查阅病历或电话访谈获取随访临床数据。
单变量和多变量逻辑回归、受试者操作特征(ROC)曲线、校准、决策曲线、德龙检验、K-M曲线、对数秩检验。P值小于0.05(双侧)被认为具有统计学意义。
影像组学显示子区域数量与MVI概率呈正相关。放射组学-平扫模型在训练集和测试集中检测MVI的AUC分别为0.815(95%CI:0.752-0.878)和0.708(95%CI:0.599-0.817)。同样,使用放射组学-肝动脉期成像检测MVI的训练集AUC为0.790(95%CI:0.724-0.855),测试集AUC为0.712(95%CI:0.604-0.820)。联合模型表现更优,放射组学+影像组学+扩张+影像组学2+临床模型(模型7)在测试集中的AUC高于模型1-4和6(0.825对0.688、0.726、0.785、0.757、0.804,P分别为0.013、0.048、0.035、0.041、0.039)。该模型识别出的高危患者(截断值>0.11)无复发生存期较短。
包括肿瘤大小、影像组学成像、放射组学分析的联合模型在预测MVI方面表现最佳,同时还可评估预后风险。
3 技术效能:2级