Caron Claire, McCullagh Elizabeth A, Bertolin Giulia
CNRS, Univ Rennes, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, F-35000 Rennes, France.
Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA 74078.
bioRxiv. 2024 Aug 29:2024.07.02.601649. doi: 10.1101/2024.07.02.601649.
Sound sensitivity is one of the most common sensory complaints for people with autism spectrum disorders (ASDs). How and why sounds are perceived as overwhelming by affected people is unknown. To process sound information properly, the brain requires high activity and fast processing, as seen in areas like the medial nucleus of the trapezoid body (MNTB) of the auditory brainstem. Recent work has shown dysfunction in mitochondria, which are the primary source of energy in cells, in a genetic model of ASD, Fragile X syndrome (FXS). Whether mitochondrial functions are also altered in sound-processing neurons, has not been characterized yet. To address this question, we imaged the MNTB in a mouse model of FXS. We stained MNTB brain slices from wild-type and FXS mice with two mitochondrial markers, TOMM20 and PMPCB, located on the Outer Mitochondrial Membrane and in the matrix, respectively. These markers allow exploration of mitochondrial subcompartments. Our integrated imaging pipeline reveals significant sex-specific differences between genotypes. Colocalization analyses between TOMM20 and PMPCB reveal that the integrity of mitochondrial subcompartments is most disrupted in female FXS mice compared to female wildtype mice. We highlight a quantitative fluorescence microscopy pipeline to monitor mitochondrial functions in the MNTB from control or FXS mice and provide four complementary readouts. Our approach paves the way to understanding how cellular mechanisms important to sound encoding are altered in ASDs.
声音敏感是自闭症谱系障碍(ASD)患者最常见的感官问题之一。受影响的人如何以及为何会将声音感知为难以承受尚不清楚。为了正确处理声音信息,大脑需要高活性和快速处理能力,这在听觉脑干的梯形体内侧核(MNTB)等区域可以看到。最近的研究表明,在自闭症的一种遗传模型——脆性X综合征(FXS)中,线粒体(细胞的主要能量来源)存在功能障碍。声音处理神经元中的线粒体功能是否也发生了改变,目前尚未得到表征。为了解决这个问题,我们对FXS小鼠模型的MNTB进行了成像。我们用两种分别位于线粒体外膜和基质中的线粒体标记物TOMM20和PMPCB对野生型和FXS小鼠的MNTB脑切片进行染色。这些标记物有助于探索线粒体亚区室。我们的综合成像流程揭示了不同基因型之间存在显著的性别特异性差异。TOMM20和PMPCB之间的共定位分析表明,与雌性野生型小鼠相比,雌性FXS小鼠的线粒体亚区室完整性受到的破坏最大。我们重点介绍了一种定量荧光显微镜流程,用于监测对照小鼠或FXS小鼠MNTB中的线粒体功能,并提供了四种互补的读数。我们的方法为理解自闭症中对声音编码重要的细胞机制是如何改变的铺平了道路。