Suppr超能文献

医疗保健领域联邦学习的最新方法进展。

Recent methodological advances in federated learning for healthcare.

作者信息

Zhang Fan, Kreuter Daniel, Chen Yichen, Dittmer Sören, Tull Samuel, Shadbahr Tolou, Preller Jacobus, Rudd James H F, Aston John A D, Schönlieb Carola-Bibiane, Gleadall Nicholas, Roberts Michael

机构信息

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK.

ZeTeM, University of Bremen, Bremen, Germany.

出版信息

Patterns (N Y). 2024 Jun 14;5(6):101006. doi: 10.1016/j.patter.2024.101006.

Abstract

For healthcare datasets, it is often impossible to combine data samples from multiple sites due to ethical, privacy, or logistical concerns. Federated learning allows for the utilization of powerful machine learning algorithms without requiring the pooling of data. Healthcare data have many simultaneous challenges, such as highly siloed data, class imbalance, missing data, distribution shifts, and non-standardized variables, that require new methodologies to address. Federated learning adds significant methodological complexity to conventional centralized machine learning, requiring distributed optimization, communication between nodes, aggregation of models, and redistribution of models. In this systematic review, we consider all papers on Scopus published between January 2015 and February 2023 that describe new federated learning methodologies for addressing challenges with healthcare data. We reviewed 89 papers meeting these criteria. Significant systemic issues were identified throughout the literature, compromising many methodologies reviewed. We give detailed recommendations to help improve methodology development for federated learning in healthcare.

摘要

对于医疗保健数据集,由于伦理、隐私或后勤方面的考虑,通常无法合并来自多个站点的数据样本。联邦学习允许在不要求汇集数据的情况下利用强大的机器学习算法。医疗保健数据面临许多同时存在的挑战,例如数据高度分散、类别不平衡、数据缺失、分布变化以及变量未标准化等,这需要新的方法来解决。联邦学习给传统的集中式机器学习增加了显著的方法复杂性,需要分布式优化、节点间通信、模型聚合以及模型重新分配。在本系统综述中,我们考虑了2015年1月至2023年2月期间在Scopus上发表的所有描述用于应对医疗保健数据挑战的新联邦学习方法的论文。我们审查了89篇符合这些标准的论文。在整个文献中发现了重大的系统性问题,影响了许多所审查的方法。我们给出详细建议以帮助改进医疗保健领域联邦学习的方法开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22b1/11240178/72ea0c9a9807/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验