Suppr超能文献

从[具体来源]基因组中鉴定抗癌肽:计算机模拟筛选、体外和体内验证

Identification of Anticancer Peptides from the Genome of : in Silico Screening, in Vitro and in Vivo Validations.

作者信息

Cheong Hong-Hin, Zuo Weimin, Chen Jiarui, Un Chon-Wai, Si Yain-Whar, Wong Koon Ho, Kwok Hang Fai, Siu Shirley W I

机构信息

Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Avenida de Universidade, Taipa, Macau SAR 999078, China.

Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR 999078, China.

出版信息

J Chem Inf Model. 2024 Aug 12;64(15):6174-6189. doi: 10.1021/acs.jcim.4c00501. Epub 2024 Jul 15.

Abstract

Anticancer peptides (ACPs) are promising future therapeutics, but their experimental discovery remains time-consuming and costly. To accelerate the discovery process, we propose a computational screening workflow to identify, filter, and prioritize peptide sequences based on predicted class probability, antitumor activity, and toxicity. The workflow was applied to identify novel ACPs with potent activity against colorectal cancer from the genome sequences of . As a result, four candidates were identified and validated in the HCT116 colon cancer cell line. Among them, PCa1 and PCa2 emerged as the most potent, displaying IC values of 3.75 and 56.06 μM, respectively, and demonstrating a 4-fold selectivity for cancer cells over normal cells. In the colon xenograft nude mice model, the administration of both peptides resulted in substantial inhibition of tumor growth without causing significant adverse effects. In conclusion, this work not only contributes a proven computational workflow for ACP discovery but also introduces two peptides, PCa1 and PCa2, as promising candidates poised for further development as targeted therapies for colon cancer. The method as a web service is available at https://app.cbbio.online/acpep/home and the source code at https://github.com/cartercheong/AcPEP_classification.git.

摘要

抗癌肽(ACPs)是未来很有前景的治疗药物,但其实验发现仍然耗时且成本高昂。为了加速发现过程,我们提出了一种计算筛选工作流程,以基于预测的类别概率、抗肿瘤活性和毒性来识别、筛选肽序列并确定其优先级。该工作流程被应用于从……的基因组序列中识别对结直肠癌具有强效活性的新型ACPs。结果,在HCT116结肠癌细胞系中鉴定并验证了四个候选肽。其中,PCa1和PCa2表现最为强效,其IC值分别为3.75和56.06 μM,并且对癌细胞的选择性是正常细胞的4倍。在结肠异种移植裸鼠模型中,给予这两种肽均导致肿瘤生长受到显著抑制,且未引起明显的不良反应。总之,这项工作不仅为ACPs的发现贡献了一个经过验证的计算工作流程,还引入了两种肽PCa1和PCa2,作为有前景的候选药物,有望进一步开发成为结肠癌的靶向治疗药物。该方法作为网络服务可在https://app.cbbio.online/acpep/home获取,源代码可在https://github.com/cartercheong/AcPEP_classification.git获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验