Suppr超能文献

一种利用表观遗传学数据检测表型关联的新假说生成方法。

A novel hypothesis-generating approach for detecting phenotypic associations using epigenetic data.

机构信息

MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK.

Population Health Sciences, Bristol Medical School, Bristol, UK.

出版信息

Epigenomics. 2024;16(11-12):851-864. doi: 10.1080/17501911.2024.2366157. Epub 2024 Jul 17.

Abstract

Hypotheses about what phenotypes to include in causal analyses, that in turn can have clinical and policy implications, can be guided by hypothesis-free approaches leveraging the epigenome, for example. Minimally adjusted epigenome-wide association studies (EWAS) using ALSPAC data were performed for example conditions, dysmenorrhea and heavy menstrual bleeding (HMB). Differentially methylated CpGs were searched in the EWAS Catalog and associated traits identified. Traits were compared between those with and without the example conditions in ALSPAC. Seven CpG sites were associated with dysmenorrhea and two with HMB. Smoking and adverse childhood experience score were associated with both conditions in the hypothesis-testing phase. Hypothesis-generating EWAS can help identify associations for future analyses.

摘要

假设可以通过无假设的方法来指导纳入因果分析的表型,例如利用表观基因组。例如,针对例如痛经和月经过多(HMB)等情况,使用 ALSPAC 数据进行了最小调整的表观基因组全基因组关联研究(EWAS)。在 EWAS 目录中搜索差异甲基化的 CpG,并确定相关特征。在 ALSPAC 中,比较有和没有这些情况的个体之间的特征。有 7 个 CpG 位点与痛经相关,2 个与 HMB 相关。在假设检验阶段,吸烟和不良童年经历评分与这两种情况均相关。生成假设的 EWAS 可以帮助确定未来分析的关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4889/11370959/0615537d1012/IEPI_A_2366157_F0001_B.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验