Suppr超能文献

结核分枝杆菌利用丝氨酸/苏氨酸激酶 PknF 逃避 NLRP3 炎性小体驱动的 caspase-1 和 RIPK3/caspase-8 在小鼠树突状细胞中的激活。

Mycobacterium tuberculosis Utilizes Serine/Threonine Kinase PknF to Evade NLRP3 Inflammasome-driven Caspase-1 and RIPK3/Caspase-8 Activation in Murine Dendritic Cells.

机构信息

Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD.

出版信息

J Immunol. 2024 Sep 1;213(5):690-699. doi: 10.4049/jimmunol.2300753.

Abstract

Dendritic cells (DCs) are crucial for initiating the acquired immune response to infectious diseases such as tuberculosis. Mycobacterium tuberculosis has evolved strategies to inhibit activation of the NLRP3 inflammasome in macrophages via its serine/threonine protein kinase, protein kinase F (PknF). It is not known whether this pathway is conserved in DCs. In this study, we show that the pknF deletion mutant of M. tuberculosis (MtbΔpknF) compared with wild-type M. tuberculosis-infected cells induces increased production of IL-1β and increased pyroptosis in murine bone marrow-derived DCs (BMDCs). As shown for murine macrophages, the enhanced production of IL-1β postinfection of BMDCs with MtbΔpknF is dependent on NLRP3, ASC, and caspase-1/11. In contrast to macrophages, we show that MtbΔpknF mediates RIPK3/caspase-8-dependent IL-1β production in BMDCs. Consistently, infection with MtbΔpknF results in increased activation of caspase-1 and caspase-8 in BMDCs. When compared with M. tuberculosis-infected cells, the IL-6 production by MtbΔpknF-infected cells was unchanged, indicating that the mutant does not affect the priming phase of inflammasome activation. In contrast, the activation phase was impacted because the MtbΔpknF-induced inflammasome activation in BMDCs depended on potassium efflux, chloride efflux, reactive oxygen species generation, and calcium influx. In conclusion, PknF is important for M. tuberculosis to evade NLRP3 inflammasome-mediated activation of caspase-1 and RIPK3/caspase-8 pathways in BMDCs.

摘要

树突状细胞(DCs)对于引发针对结核病等传染病的获得性免疫反应至关重要。结核分枝杆菌已经进化出通过其丝氨酸/苏氨酸蛋白激酶、蛋白激酶 F(PknF)抑制巨噬细胞中 NLRP3 炎性小体激活的策略。尚不清楚该途径是否在 DC 中保守。在这项研究中,我们表明与野生型结核分枝杆菌感染细胞相比,结核分枝杆菌 pknF 缺失突变体(MtbΔpknF)诱导小鼠骨髓来源的树突状细胞(BMDC)中 IL-1β 的产生增加和细胞焦亡增加。与鼠巨噬细胞一样,MtbΔpknF 感染 BMDC 后 IL-1β 的产生增强依赖于 NLRP3、ASC 和 caspase-1/11。与巨噬细胞相反,我们表明 MtbΔpknF 在 BMDC 中介导 RIPK3/caspase-8 依赖性 IL-1β 产生。一致地,与结核分枝杆菌感染细胞相比,MtbΔpknF 感染导致 BMDC 中 caspase-1 和 caspase-8 的激活增加。与结核分枝杆菌感染细胞相比,MtbΔpknF 感染细胞的 IL-6 产生不变,表明突变体不影响炎性小体激活的初始阶段。相反,激活阶段受到影响,因为 MtbΔpknF 在 BMDC 中诱导的炎性小体激活依赖于钾外流、氯外流、活性氧生成和钙内流。总之,PknF 对于结核分枝杆菌逃避 NLRP3 炎性小体介导的 caspase-1 和 RIPK3/caspase-8 途径在 BMDC 中的激活很重要。

相似文献

3
Mycobacterium tuberculosis inhibits the NLRP3 inflammasome activation via its phosphokinase PknF.
PLoS Pathog. 2021 Jul 29;17(7):e1009712. doi: 10.1371/journal.ppat.1009712. eCollection 2021 Jul.
4
Cis-resveratrol blocks crystal-induced NLRP3 inflammasome activation via the TRPV4-Ca²⁺-phagocytosis-ROS axis.
Phytomedicine. 2025 Oct;146:157145. doi: 10.1016/j.phymed.2025.157145. Epub 2025 Aug 10.
5
Two-pore potassium channel TREK-1 (K2P2.1) regulates NLRP3 inflammasome activity in macrophages.
Am J Physiol Lung Cell Mol Physiol. 2024 Mar 1;326(3):L367-L376. doi: 10.1152/ajplung.00313.2023. Epub 2024 Jan 22.
6
Bystander monocytic cells drive infection-independent NLRP3 inflammasome response to SARS-CoV-2.
mBio. 2024 Oct 16;15(10):e0081024. doi: 10.1128/mbio.00810-24. Epub 2024 Sep 6.
7
FCV activates NLRP3 inflammasome through ion-dependent pathway to promote IL-1β secretion.
Vet Microbiol. 2025 Aug;307:110628. doi: 10.1016/j.vetmic.2025.110628. Epub 2025 Jun 28.
8
p120-Catenin suppresses NLRP3 inflammasome activation in macrophages.
Am J Physiol Lung Cell Mol Physiol. 2023 May 1;324(5):L596-L608. doi: 10.1152/ajplung.00328.2022. Epub 2023 Mar 7.
9
Innate immune sensor NLRP3 drives PANoptosome formation and PANoptosis.
J Immunol. 2025 Apr 18. doi: 10.1093/jimmun/vkaf042.

引用本文的文献

本文引用的文献

1
The role of caspase-8 in inflammatory signalling and pyroptotic cell death.
Semin Immunol. 2023 Nov;70:101832. doi: 10.1016/j.smim.2023.101832. Epub 2023 Aug 23.
3
Pyroptosis in defense against intracellular bacteria.
Semin Immunol. 2023 Sep;69:101805. doi: 10.1016/j.smim.2023.101805. Epub 2023 Jul 8.
4
Pyroptosis modulation by bacterial effector proteins.
Semin Immunol. 2023 Sep;69:101804. doi: 10.1016/j.smim.2023.101804. Epub 2023 Jul 3.
5
Putting the p(hosphor) in pyroptosis.
Cell Host Microbe. 2022 Dec 14;30(12):1650-1652. doi: 10.1016/j.chom.2022.11.010.
6
A bacterial phospholipid phosphatase inhibits host pyroptosis by hijacking ubiquitin.
Science. 2022 Oct 14;378(6616):eabq0132. doi: 10.1126/science.abq0132.
8
Interaction of Mycobacteria With Host Cell Inflammasomes.
Front Immunol. 2022 Feb 14;13:791136. doi: 10.3389/fimmu.2022.791136. eCollection 2022.
9
Mycobacterium tuberculosis inhibits the NLRP3 inflammasome activation via its phosphokinase PknF.
PLoS Pathog. 2021 Jul 29;17(7):e1009712. doi: 10.1371/journal.ppat.1009712. eCollection 2021 Jul.
10
Single cell analysis of M. tuberculosis phenotype and macrophage lineages in the infected lung.
J Exp Med. 2021 Sep 6;218(9). doi: 10.1084/jem.20210615. Epub 2021 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验