Suppr超能文献

用于室温气体传感的相工程MoSe/CeO复合材料,对NH₃和三乙胺气体具有显著区分能力

Phase-Engineered MoSe/CeO Composites for Room-Temperature Gas Sensing with a Drastic Discrimination of NH and TEA Gases.

作者信息

Singh Sukhwinder, Shin Ka Yoon, Moon Sungjoon, Kim Sang Sub, Kim Hyoun Woo

机构信息

Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea.

Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea.

出版信息

ACS Sens. 2024 Aug 23;9(8):3994-4006. doi: 10.1021/acssensors.4c00793. Epub 2024 Jul 23.

Abstract

Detecting and distinguishing between hazardous gases with similar odors by using conventional sensor technology for safeguarding human health and ensuring food safety are significant challenges. Bulky, costly, and power-hungry devices, such as that used for gas chromatography-mass spectrometry (GC-MS), are widely employed for gas sensing. Using a single chemiresistive semiconductor or electric nose (e-nose) gas sensor to achieve this objective is difficult, mainly because of its selectivity issue. Thus, there is a need to develop new materials with tunable and versatile sensing characteristics. Phase engineering of two-dimensional materials to better utilize their physiochemical properties has attracted considerable attention. Here, we show that MoSe phase-transition/CeO composites can be effectively used to distinguish ammonia (NH) and triethylamine (TEA) at room temperature. The phase transition of nanocomposite samples from semimetallic (1T) to semiconducting (2H) prepared at different synthesis temperatures is confirmed via X-ray photoelectron spectroscopy (XPS). A composite sensor in which the 2H phase of MoSe is predominant lacks discrimination capability and is less responsive to NH and TEA. An MoSe/CeO composite sensor with a higher 1T phase content exhibits high selectivity for NH, whereas one with a higher 2H phase content (2H > 1T) shows more selective behavior toward TEA. For example, for 50% relative humidity, the MoSe/CeO sensor's signal changes from the baseline by 45% and 58% for 1 ppm of NH and TEA, respectively, indicating a low limit of detection (LOD) of 70 and 160 ppb, respectively. The composites' superior sensing characteristics are mainly attributed to their large specific surface area, their numerous active sites, presence of defects, and the n-n type heterojunction between MoSe and CeO. The sensing mechanism is elucidated using Raman spectroscopy, XPS, and GC-MS results. Their phase-transition characteristics render MoSe/CeO sensors promising for use in distributed, low-cost, and room-temperature sensor networks, and they offer new opportunities for the development of integrated advanced smart sensing technologies for environmental and healthcare.

摘要

利用传统传感器技术检测和区分气味相似的有害气体以保障人类健康和确保食品安全是重大挑战。诸如用于气相色谱 - 质谱联用(GC - MS)的设备体积庞大、成本高昂且耗电量大,被广泛用于气体传感。使用单个化学电阻半导体或电子鼻(e - nose)气体传感器来实现这一目标很困难,主要是因为其选择性问题。因此,需要开发具有可调谐和通用传感特性的新材料。二维材料的相工程以更好地利用其物理化学性质已引起相当大的关注。在此,我们表明MoSe相变/CeO复合材料可有效用于在室温下区分氨(NH₃)和三乙胺(TEA)。通过X射线光电子能谱(XPS)确认了在不同合成温度下制备的纳米复合样品从半金属(1T)到半导体(2H)的相变。以MoSe的2H相为主的复合传感器缺乏辨别能力,对NH₃和TEA的响应较小。具有较高1T相含量的MoSe/CeO复合传感器对NH₃表现出高选择性,而具有较高2H相含量(2H > 1T)的传感器对TEA表现出更具选择性的行为。例如,对于50%的相对湿度,MoSe/CeO传感器对于1 ppm的NH₃和TEA,其信号分别从基线变化45%和58%,表明检测限(LOD)分别为70和160 ppb。复合材料优异的传感特性主要归因于其大的比表面积、众多活性位点、缺陷的存在以及MoSe和CeO之间的n - n型异质结。利用拉曼光谱、XPS和GC - MS结果阐明了传感机制。它们的相变特性使MoSe/CeO传感器有望用于分布式、低成本和室温传感器网络,并为开发用于环境和医疗保健的集成先进智能传感技术提供了新机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验