Laboratorio de Bacteriología Experimental, Instituto Nacional de Pediatría, Insurgentes sur 3700-C, Col. Insurgentes Cuicuilco, Coyoacán C.P. 04530, Mexico.
Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Coyoacán C.P. 04960, Mexico.
Biosensors (Basel). 2024 Jul 11;14(7):339. doi: 10.3390/bios14070339.
The species included in the ESKAPE group (, , , , and the genus ) have a high capacity to develop antimicrobial resistance (AMR), a health problem that is already among the leading causes of death and could kill 10 million people a year by 2050. The generation of new potentially therapeutic molecules has been insufficient to combat the AMR "crisis", and the World Health Organization (WHO) has stated that it will seek to promote the development of rapid diagnostic strategies. The physicochemical properties of metallic nanoparticles (MNPs) have made it possible to design biosensors capable of identifying low concentrations of ESKAPE bacteria in the short term; other systems identify antimicrobial susceptibility, and some have been designed with dual activity in situ (bacterial detection and antimicrobial activity), which suggests that, in the near future, multifunctional biosensors could exist based on MNPs capable of quickly identifying bacterial pathogens in clinical niches might become commercially available. This review focuses on the use of MNP-based systems for the rapid and accurate identification of clinically important bacterial pathogens, exhibiting the necessity for exhaustive research to achieve these objectives. This review focuses on the use of metal nanoparticle-based systems for the rapid and accurate identification of clinically important bacterial pathogens.
ESKAPE 组(肠杆菌科、金黄色葡萄球菌、肺炎克雷伯菌、鲍曼不动杆菌、铜绿假单胞菌和 属)中的物种具有很强的产生抗微生物药物耐药性(AMR)的能力,这是一个健康问题,已经成为导致死亡的主要原因之一,到 2050 年,每年可能导致 1000 万人死亡。新的潜在治疗性分子的产生不足以应对 AMR“危机”,世界卫生组织(WHO)表示将寻求促进快速诊断策略的发展。金属纳米粒子(MNPs)的物理化学性质使得设计能够在短期内识别 ESKAPE 细菌低浓度的生物传感器成为可能;其他系统可识别抗菌药物敏感性,有些系统具有原位双重活性(细菌检测和抗菌活性),这表明在不久的将来,基于能够快速识别临床环境中细菌病原体的 MNPs 的多功能生物传感器可能会商业化。本文综述了基于 MNPs 的系统在快速准确识别临床重要细菌病原体中的应用,展示了为实现这些目标进行详尽研究的必要性。本文综述了基于金属纳米粒子的系统在快速准确识别临床重要细菌病原体中的应用。