Suppr超能文献

弥合差距:整合3D生物打印与微流控技术以构建生物医学研究中的先进多器官模型

Bridging the Gap: Integrating 3D Bioprinting and Microfluidics for Advanced Multi-Organ Models in Biomedical Research.

作者信息

De Spirito Marco, Palmieri Valentina, Perini Giordano, Papi Massimiliano

机构信息

Department of Neuroscience, Universita Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.

Istituti di Ricovero e Cura a Carattere Scientifico IRCSS, Fondazione Policlinico Universitario "A. Gemelli", Largo A. Gemelli 8, 00168 Rome, Italy.

出版信息

Bioengineering (Basel). 2024 Jun 28;11(7):664. doi: 10.3390/bioengineering11070664.

Abstract

Recent advancements in 3D bioprinting and microfluidic lab-on-chip systems offer promising solutions to the limitations of traditional animal models in biomedical research. Three-dimensional bioprinting enables the creation of complex, patient-specific tissue models that mimic human physiology more accurately than animal models. These 3D bioprinted tissues, when integrated with microfluidic systems, can replicate the dynamic environment of the human body, allowing for the development of multi-organ models. This integration facilitates more precise drug screening and personalized therapy development by simulating interactions between different organ systems. Such innovations not only improve predictive accuracy but also address ethical concerns associated with animal testing, aligning with the three Rs principle. Future directions include enhancing bioprinting resolution, developing advanced bioinks, and incorporating AI for optimized system design. These technologies hold the potential to revolutionize drug development, regenerative medicine, and disease modeling, leading to more effective, personalized, and humane treatments.

摘要

3D生物打印和微流控芯片实验室系统的最新进展为解决生物医学研究中传统动物模型的局限性提供了有前景的解决方案。三维生物打印能够创建复杂的、针对患者的组织模型,比动物模型更准确地模拟人体生理机能。这些3D生物打印组织与微流控系统集成后,能够复制人体的动态环境,从而开发多器官模型。这种集成通过模拟不同器官系统之间的相互作用,有助于进行更精确的药物筛选和个性化治疗开发。此类创新不仅提高了预测准确性,还解决了与动物试验相关的伦理问题,符合3R原则。未来的发展方向包括提高生物打印分辨率、开发先进的生物墨水以及引入人工智能以优化系统设计。这些技术有望彻底改变药物开发、再生医学和疾病建模,带来更有效、个性化和人道的治疗方法。

相似文献

1
Bridging the Gap: Integrating 3D Bioprinting and Microfluidics for Advanced Multi-Organ Models in Biomedical Research.
Bioengineering (Basel). 2024 Jun 28;11(7):664. doi: 10.3390/bioengineering11070664.
2
Application of three-dimensional (3D) bioprinting in anti-cancer therapy.
Heliyon. 2023 Sep 28;9(10):e20475. doi: 10.1016/j.heliyon.2023.e20475. eCollection 2023 Oct.
4
Photosynthetic microorganisms for the oxygenation of advanced 3D bioprinted tissues.
Acta Biomater. 2023 Jul 15;165:180-196. doi: 10.1016/j.actbio.2022.05.009. Epub 2022 May 11.
6
3D Printing Techniques and Their Applications to Organ-on-a-Chip Platforms: A Systematic Review.
Sensors (Basel). 2021 May 10;21(9):3304. doi: 10.3390/s21093304.
7
Traction of 3D and 4D Printing in the Healthcare Industry: From Drug Delivery and Analysis to Regenerative Medicine.
ACS Biomater Sci Eng. 2022 Jul 11;8(7):2764-2797. doi: 10.1021/acsbiomaterials.2c00094. Epub 2022 Jun 13.
8
Progress in 3D bioprinting technology for tissue/organ regenerative engineering.
Biomaterials. 2020 Jan;226:119536. doi: 10.1016/j.biomaterials.2019.119536. Epub 2019 Oct 11.
9
3D bioprinting of tissues and organs for regenerative medicine.
Adv Drug Deliv Rev. 2018 Jul;132:296-332. doi: 10.1016/j.addr.2018.07.004. Epub 2018 Jul 7.
10
Multi-material digital light processing bioprinting of hydrogel-based microfluidic chips.
Biofabrication. 2021 Nov 24;14(1). doi: 10.1088/1758-5090/ac2d78.

引用本文的文献

1
Staged Construction of Pluripotent Stem Cell Lung Models for Assessing Respiratory Toxicity of Environmental Pollutants.
Environ Health (Wash). 2025 Jun 11;3(8):854-865. doi: 10.1021/envhealth.4c00270. eCollection 2025 Aug 15.
3
Bioprinting for drug screening: A path toward reducing animal testing or redefining preclinical research?
Bioact Mater. 2025 Jul 15;51:993-1017. doi: 10.1016/j.bioactmat.2025.07.006. eCollection 2025 Sep.
4
Recent Advances in Hydrogel-Based 3D Disease Modeling and Drug Screening Platforms.
Adv Exp Med Biol. 2025;1483:187-214. doi: 10.1007/5584_2025_851.
6
The cutting-edge progress in bioprinting for biomedicine: principles, applications, and future perspectives.
MedComm (2020). 2024 Sep 23;5(10):e753. doi: 10.1002/mco2.753. eCollection 2024 Oct.

本文引用的文献

2
Extreme transport of light in spheroids of tumor cells.
Nat Commun. 2023 Aug 3;14(1):4662. doi: 10.1038/s41467-023-40379-7.
3
Machine Learning in Predicting Printable Biomaterial Formulations for Direct Ink Writing.
Research (Wash D C). 2023 Jul 18;6:0197. doi: 10.34133/research.0197. eCollection 2023.
4
The FDA Modernization Act 2.0: Drug Testing in Animals is Rendered Optional.
Am J Med. 2023 Sep;136(9):853-854. doi: 10.1016/j.amjmed.2023.03.033. Epub 2023 Apr 18.
5
Organs-on-chips technologies - A guide from disease models to opportunities for drug development.
Biosens Bioelectron. 2023 Jul 1;231:115271. doi: 10.1016/j.bios.2023.115271. Epub 2023 Mar 31.
6
Microfluidics for Biomedical Applications.
Biosensors (Basel). 2023 Jan 20;13(2):161. doi: 10.3390/bios13020161.
7
Challenges and opportunities for the next generation of cardiovascular tissue engineering.
Nat Methods. 2022 Sep;19(9):1064-1071. doi: 10.1038/s41592-022-01591-3. Epub 2022 Sep 5.
8
Biosensors and Microfluidic Biosensors: From Fabrication to Application.
Biosensors (Basel). 2022 Jul 20;12(7):543. doi: 10.3390/bios12070543.
9
Why 90% of clinical drug development fails and how to improve it?
Acta Pharm Sin B. 2022 Jul;12(7):3049-3062. doi: 10.1016/j.apsb.2022.02.002. Epub 2022 Feb 11.
10
Biodegradable Inks in Indirect Three-Dimensional Bioprinting for Tissue Vascularization.
Front Bioeng Biotechnol. 2022 Mar 25;10:856398. doi: 10.3389/fbioe.2022.856398. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验