The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong, 528200, China.
Institute for Engineering Medicine, Kunming Medical University, Kunming, Yunnan, 650500, China.
Adv Mater. 2024 Sep;36(38):e2406143. doi: 10.1002/adma.202406143. Epub 2024 Jul 28.
Tuberculosis, a fatal infectious disease caused by Mycobacterium tuberculosis (M.tb), is difficult to treat with antibiotics due to drug resistance and short drug half-life. Phototherapy represents a promising alternative to antibiotics in combating M.tb. Exploring an intelligent material allowing effective tuberculosis treatment is definitely appealing, yet a significantly challenging task. Herein, an all-in-one biomimetic therapeutic nanoparticle featured by aggregation-induced second near-infrared emission, granuloma-targeting, and self-oxygenation is constructed, which can serve for prominent fluorescence imaging-navigated combined phototherapy toward tuberculosis. After camouflaging the biomimetic erythrocyte membrane, the nanoparticles show significantly prolonged blood circulation and increased selective accumulation in tuberculosis granuloma. Upon laser irradiation, the loading photosensitizer of aggregation-induced emission photosensitizer elevates the production of reactive oxygen species (ROS), causing M.tb damage and death. The delivery of oxygen to relieve the hypoxic granuloma microenvironment supports ROS generation during photodynamic therapy. Meanwhile, the photothermal agent, Prussian blue nanoparticles, plays the role of good photothermal killing effect on M.tb. Moreover, the growth and proliferation of granuloma and M.tb colonies are effectively inhibited in the nanoparticle-treated tuberculous granuloma model mice, suggesting the combined therapeutic effects of enhancing photodynamic therapy and photothermal therapy.
结核病是一种由结核分枝杆菌(M.tb)引起的致命传染病,由于耐药性和药物半衰期短,抗生素治疗效果不佳。光疗作为一种有前途的抗生素替代疗法,在对抗 M.tb 方面具有重要意义。探索一种智能材料来有效治疗结核病,这绝对是一个吸引人但极具挑战性的任务。本文构建了一种具有聚集诱导的二次近红外发射、肉芽肿靶向和自供氧功能的一体化仿生治疗纳米颗粒,可用于显著的荧光成像引导联合光疗结核病。在伪装仿生红细胞膜后,纳米颗粒显示出明显延长的血液循环时间和增加在结核病肉芽肿中的选择性积累。激光照射后,聚集诱导发射光敏剂的负载光敏剂会增加活性氧(ROS)的产生,导致 M.tb 损伤和死亡。向缺氧的肉芽肿微环境中输送氧气以支持光动力治疗期间 ROS 的产生。同时,光热剂普鲁士蓝纳米颗粒对 M.tb 具有良好的光热杀伤作用。此外,在纳米颗粒处理的结核性肉芽肿模型小鼠中,肉芽肿和 M.tb 菌落的生长和增殖得到了有效抑制,这表明增强光动力治疗和光热治疗的联合治疗效果。