Cell-Tech HUB at Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy.
Institute of Biosciences and BioResources, National Research Council (CNR), Naples, Italy.
Commun Biol. 2024 Aug 3;7(1):941. doi: 10.1038/s42003-024-06612-9.
Extracellular vesicles (EVs) are membrane-enclosed bio-nanoparticles secreted by cells and naturally evolved to transport various bioactive molecules between cells and even organisms. These cellular objects are considered one of the most promising bio-nanovehicles for the delivery of native and exogenous molecular cargo. However, many challenges with state-of-the-art EV-based candidates as drug carriers still exist, including issues with scalability, batch-to-batch reproducibility, and cost-sustainability of the final therapeutic formulation. Microalgal extracellular vesicles, which we named nanoalgosomes, are naturally released by various microalgal species. Here, we evaluate the innate biological properties of nanoalgosomes derived from cultures of the marine microalgae Tetraselmis chuii, using an optimized manufacturing protocol. Our investigation of nanoalgosome biocompatibility in preclinical models includes toxicological analyses, using the invertebrate model organism Caenorhabditis elegans, hematological and immunological evaluations ex vivo and in mice. We evaluate nanoalgosome cellular uptake mechanisms in C. elegans at cellular and subcellular levels, and study their biodistribution in mice with accurate space-time resolution. Further examination highlights the antioxidant and anti-inflammatory bioactivities of nanoalgosomes. This holistic approach to nanoalgosome functional characterization demonstrates that they are biocompatible and innate bioactive effectors with unique bone tropism. These findings suggest that nanoalgosomes have significant potential for future therapeutic applications.
细胞外囊泡 (EVs) 是由细胞分泌的膜封闭的生物纳米颗粒,天然进化以在细胞甚至生物体之间运输各种生物活性分子。这些细胞物体被认为是最有前途的生物纳米载体之一,可用于输送天然和外源性分子货物。然而,作为药物载体的最先进的 EV 候选物仍然存在许多挑战,包括可扩展性、批次间重现性以及最终治疗制剂的成本可持续性问题。微藻细胞外囊泡,我们称之为纳米囊泡,是由各种微藻物种自然释放的。在这里,我们使用优化的制造方案评估了来源于海洋微藻 Tetraselmis chuii 培养物的纳米囊泡的固有生物学特性。我们在临床前模型中对纳米囊泡生物相容性的研究包括使用无脊椎动物模式生物秀丽隐杆线虫进行毒理学分析、离体和在小鼠中进行血液学和免疫学评估。我们在秀丽隐杆线虫中评估纳米囊泡在细胞和亚细胞水平的细胞摄取机制,并使用准确的时空分辨率研究其在小鼠中的生物分布。进一步的检查强调了纳米囊泡的抗氧化和抗炎生物活性。这种纳米囊泡功能特征的整体方法表明,它们具有生物相容性和内在的生物活性效应,具有独特的骨向性。这些发现表明纳米囊泡具有未来治疗应用的巨大潜力。