Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
Diabetologia. 2024 Nov;67(11):2507-2517. doi: 10.1007/s00125-024-06246-w. Epub 2024 Aug 6.
AIMS/HYPOTHESIS: Although statistical models for predicting type 1 diabetes risk have been developed, approaches that reveal the heterogeneity of the at-risk population by identifying clinically meaningful clusters are lacking. We aimed to identify and characterise clusters of islet autoantibody-positive individuals who share similar characteristics and type 1 diabetes risk.
We tested a novel outcome-guided clustering method in initially non-diabetic autoantibody-positive relatives of individuals with type 1 diabetes, using the TrialNet Pathway to Prevention study data (n=1123). The outcome of the analysis was the time to development of type 1 diabetes, and variables in the model included demographic characteristics, genetics, metabolic factors and islet autoantibodies. An independent dataset (the Diabetes Prevention Trial of Type 1 Diabetes Study) (n=706) was used for validation.
The analysis revealed six clusters with varying type 1 diabetes risks, categorised into three groups based on the hierarchy of clusters. Group A comprised one cluster with high glucose levels (median for glucose mean AUC 9.48 mmol/l; IQR 9.16-10.02) and high risk (2-year diabetes-free survival probability 0.42; 95% CI 0.34, 0.51). Group B comprised one cluster with high IA-2A titres (median 287 DK units/ml; IQR 250-319) and elevated autoantibody titres (2-year diabetes-free survival probability 0.73; 95% CI 0.67, 0.80). Group C comprised four lower-risk clusters with lower autoantibody titres and glucose levels (with 2-year diabetes-free survival probability ranging from 0.84-0.99 in the four clusters). Within group C, the clusters exhibit variations in characteristics such as glucose levels, C-peptide levels and age. A decision rule for assigning individuals to clusters was developed. Use of the validation dataset confirmed that the clusters can identify individuals with similar characteristics.
CONCLUSIONS/INTERPRETATION: Demographic, metabolic, immunological and genetic markers may be used to identify clusters of distinctive characteristics and different risks of progression to type 1 diabetes among autoantibody-positive individuals with a family history of type 1 diabetes. The results also revealed the heterogeneity in the population and complex interactions between variables.
目的/假设:尽管已经开发出用于预测 1 型糖尿病风险的统计模型,但缺乏通过识别有临床意义的聚类来揭示高危人群异质性的方法。我们旨在确定和描述胰岛自身抗体阳性个体的聚类,这些个体具有相似的特征和 1 型糖尿病风险。
我们使用 TrialNet 预防研究的数据(n=1123),对最初非糖尿病的胰岛自身抗体阳性个体的一级亲属进行了一种新的基于结果的聚类方法测试。分析的结果是 1 型糖尿病的发病时间,模型中的变量包括人口统计学特征、遗传学、代谢因素和胰岛自身抗体。使用独立数据集(1 型糖尿病预防试验)(n=706)进行验证。
分析显示,有六个具有不同 1 型糖尿病风险的聚类,根据聚类的层次结构分为三组。A 组包括一个高血糖水平的聚类(葡萄糖平均 AUC 的中位数为 9.48mmol/l;IQR 为 9.16-10.02)和高风险(2 年无糖尿病生存率为 0.42;95%CI 为 0.34,0.51)。B 组包括一个高 IA-2A 滴度的聚类(中位数 287DK 单位/ml;IQR 为 250-319)和升高的自身抗体滴度(2 年无糖尿病生存率为 0.73;95%CI 为 0.67,0.80)。C 组包括四个低风险聚类,其自身抗体滴度和血糖水平较低(四个聚类中 2 年无糖尿病生存率从 0.84-0.99 不等)。在 C 组内,聚类表现出葡萄糖水平、C 肽水平和年龄等特征的变化。制定了一个将个体分配到聚类的决策规则。使用验证数据集证实,聚类可以识别具有相似特征和不同 1 型糖尿病进展风险的个体。
结论/解释:人口统计学、代谢、免疫学和遗传学标志物可用于识别具有家族 1 型糖尿病史的胰岛自身抗体阳性个体中具有不同特征和不同 1 型糖尿病进展风险的聚类。结果还揭示了人群中的异质性和变量之间的复杂相互作用。