Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, 80126 Naples, Italy.
Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy.
ACS Appl Mater Interfaces. 2024 Aug 28;16(34):45371-45382. doi: 10.1021/acsami.4c10449. Epub 2024 Aug 14.
The self-assembly of proteins and peptides into fibrillar amyloid aggregates is a highly promising route to define the next generation of functional nanomaterials. Amyloid fibrils, traditionally associated with neurodegenerative diseases, offer exceptional conformational and chemical stability and mechanical properties, and resistance to degradation. Here, we report the development of catalytic amyloid nanomaterials through the conjugation of a miniaturized artificial peroxidase (FeMC6a) to a self-assembling amyloidogenic peptide derived from human transthyretin, TTR(105-115), whose sequence is YTIAALLSPYS. Our synthetic approach relies on fast and selective click ligation upon proper modification of both the peptide and FeMC6a, leading to TTRLys@FeMC6a. Mixing unmodified TTR(105-115) with TTRLys@FeMC6a allowed the generation of enzyme-loaded amyloid fibrils, namely, FeMC6a@fibrils. Catalytic studies, performed in aqueous solution at nearly neutral pH, using ABTS as a model substrate and HO as the oxidizing agent revealed that the enzyme retains its catalytic activity. Moreover, the activity was found to depend on the TTRLys@FeMC6a/unmodified TTR(105-115) peptide ratio. In particular, those with the 2:100 ratio showed the highest activity in terms of initial rates and substrate conversion among the screened nanoconjugates and compared to the freely diffusing enzyme. Finally, the newly developed nanomaterials were integrated into a flow system based on a polyvinylidene difluoride membrane filter. Within this flow-reactor, multiple reaction cycles were performed, showcasing the reusability and stability of the catalytic amyloids over extended periods, thus offering significantly improved characteristics compared to the isolated FeMC6*a in the application to a number of practical scenarios.
蛋白质和肽自组装成纤维状淀粉样聚集物是定义下一代功能纳米材料的极具前景的途径。淀粉样纤维,传统上与神经退行性疾病相关,具有出色的构象和化学稳定性以及机械性能,并且不易降解。在这里,我们通过将微型人工过氧化物酶(FeMC6a)与源自人转甲状腺素蛋白(TTR)的自组装淀粉样肽缀合,开发了催化淀粉样纳米材料。TTR 的序列为 YTIAALLSPYS。我们的合成方法依赖于肽和 FeMC6a 适当修饰后的快速和选择性点击连接,导致 TTRLys@FeMC6a。将未修饰的 TTR(105-115)与 TTRLys@FeMC6a 混合允许生成酶负载的淀粉样纤维,即 FeMC6a@fibrils。在近中性 pH 的水溶液中进行的催化研究,使用 ABTS 作为模型底物和 HO 作为氧化剂,表明该酶保持其催化活性。此外,发现该活性取决于 TTRLys@FeMC6a/未修饰的 TTR(105-115)肽的比率。特别是,在所筛选的纳米缀合物中,那些具有 2:100 比率的纳米缀合物在初始速率和底物转化率方面表现出最高的活性,并且与自由扩散的酶相比也是如此。最后,将新开发的纳米材料整合到基于聚偏二氟乙烯膜过滤器的流动系统中。在该流动反应器中,进行了多个反应循环,展示了催化淀粉样纤维在延长时间内的可重复使用性和稳定性,与在许多实际情况下应用于孤立的 FeMC6*a 相比,提供了显著改善的特性。