Choe Dabin K, Aiello Ashlyn J, Spangler Johanna E, Walsh Conor J, Awad Louis N
John A. Paulson School of Engineering and Applied SciencesHarvard University Cambridge MA 02138 USA.
Sargent College of Health and Rehabilitation SciencesBoston University Boston MA 02215 USA.
IEEE Open J Eng Med Biol. 2024 Jul 4;5:563-572. doi: 10.1109/OJEMB.2024.3416028. eCollection 2024.
Functional electrical stimulation (FES) is a common neuromotor intervention whereby electrically evoked dorsiflexor muscle contractions assist foot clearance during walking. Plantarflexor neurostimulation has recently emerged to assist and retrain gait propulsion; however, safe and effective coordination of dorsiflexor and plantarflexor neurostimulation during overground walking has been elusive, restricting propulsion neuroprostheses to harnessed treadmill walking. We present an overground propulsion neuroprosthesis that adaptively coordinates, on a step-by-step basis, neurostimulation to the dorsiflexors and plantarflexors. In 10 individuals post-stroke, we evaluate the immediate effects of plantarflexor neurostimulation delivered with different onset timings, and retention to unassisted walking (NCT06459401). Preferred onset timing differed across individuals. Individualized tuning resulted in a significant 10% increase in paretic propulsion peak (Δ: 1.41 ± 1.52%BW) and an 8% increase in paretic plantarflexor power (Δ: 0.27 ± 0.23 W/kg), compared to unassisted walking. Post-session unassisted walking speed, paretic propulsion peak, and propulsion symmetry all significantly improved by 9% (0.14 ± 0.09 m/s), 28% (2.24 ± 3.00%BW), and 12% (4.5 ± 6.0%), respectively, compared to pre-session measurements. Here we show that an overground propulsion neuroprosthesis can improve overground walking speed and propulsion symmetry in the chronic phase of stroke recovery. Future studies should include a control group to examine the efficacy of gait training augmented by the propulsion neuroprosthesis compared to gait training alone.
功能性电刺激(FES)是一种常见的神经运动干预方法,通过电诱发背屈肌收缩来辅助行走时足部离地。最近,足底屈肌神经刺激已出现,用于辅助和重新训练步态推进;然而,在地面行走过程中,背屈肌和足底屈肌神经刺激的安全有效协调一直难以实现,这限制了推进神经假体仅用于有束缚的跑步机行走。我们展示了一种地面推进神经假体,它能在一步一步的基础上,自适应地协调对背屈肌和足底屈肌的神经刺激。在10名中风后个体中,我们评估了不同起始时间给予足底屈肌神经刺激的即时效果,以及对无辅助行走的保持情况(NCT06459401)。个体的偏好起始时间各不相同。与无辅助行走相比,个性化调整导致患侧推进峰值显著增加10%(Δ:1.41±1.52%BW),患侧足底屈肌力量增加8%(Δ:0.27±0.23W/kg)。与 session 前测量相比,session 后无辅助行走速度、患侧推进峰值和推进对称性分别显著提高了9%(0.14±0.09m/s)、28%(2.24±3.00%BW)和12%(4.5±6.0%)。在这里,我们表明地面推进神经假体可以改善中风恢复慢性期的地面行走速度和推进对称性。未来的研究应包括一个对照组,以检查与单独的步态训练相比,由推进神经假体增强的步态训练的疗效。