Suppr超能文献

高盐诱导 L-脯氨酸过量生产的代谢途径工程提高了缺四氢嘧啶的耐高盐胁迫能力。

Metabolic pathway engineering of high-salinity-induced overproduction of L-proline improves high-salinity stress tolerance of an ectoine-deficient .

机构信息

Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan.

College of Environment and Natural Resources, Can Tho University, Can Tho, Vietnam.

出版信息

Appl Environ Microbiol. 2024 Sep 18;90(9):e0119524. doi: 10.1128/aem.01195-24. Epub 2024 Aug 19.

Abstract

Halophilic bacteria have adapted to survive in high-salinity environments by accumulating amino acids and their derivatives as organic osmolytes. L-Proline (Pro) is one such osmolyte that is also being used as a feed stimulant in the aquaculture industry. OUT30018 is a moderately halophilic bacterium that accumulates ectoine (Ect), but not Pro, as an osmolyte. Due to its ability to utilize diverse biomass-derived carbon and nitrogen sources for growth, OUT30018 is used in this work to create a strain that overproduces Pro, which could be used as a sustainable Pro-rich feed additive. To achieve this, we replaced the coding region of OUT30018's Ect biosynthetic operon with the artificial self-cloned gene cluster that encodes the Pro biosynthetic enzymes: feedback-inhibition insensitive mutant γ-glutamate kinase (γ-GK), γ-glutamyl phosphate reductase, and pyrroline-5-carboxylate reductase. Additionally, the gene, which encodes the key enzyme of Pro catabolism, was deleted from the genome to generate HN6. While the Ect-deficient KA1 could not grow in minimal media containing more than 4% NaCl, HN6 thrived in the medium containing 8% NaCl by accumulating Pro in the cell instead of Ect, reaching a concentration of 353.1 ± 40.5 µmol/g cell fresh weight, comparable to the Ect accumulated in OUT30018 in response to salt stress. With its genetic background, HN6 has the potential to be developed into a Pro-rich cell factory for upcycling biomass waste into single-cell feed additives, contributing to a more sustainable aquaculture industry.IMPORTANCEWe report here the evidence for biosynthesis of Pro to be used as a major osmolyte in an ectoine-deficient . Remarkably, the concentration of Pro accumulated in HN6 () is comparable to that of ectoine accumulated in OUT30018 in response to high-salinity stress. We also found that among the two γ-glutamate kinase mutants (γ-GK and γ-GK) designed to resemble the two known feedback-inhibition insensitive γ-GK and γ-GK, the γ-GK mutant is the only one that became insensitive to feedback inhibition by Pro in . As Pro is one of the essential feed additives for the poultry and aquaculture industries, the genetic makeup of the engineered HN6 would allow for the sustainable upcycling of high-salinity waste biomass into a Pro-rich single-cell eco-feed.

摘要

嗜盐菌通过积累氨基酸及其衍生物作为有机渗透剂来适应高盐环境。L-脯氨酸(Pro)就是这样一种渗透剂,它也被用作水产养殖中的饲料刺激物。OUT30018 是一种中度嗜盐菌,它积累章鱼胺(Ect)而不是 Pro 作为渗透剂。由于其能够利用各种生物质衍生的碳和氮源进行生长,因此在这项工作中使用 OUT30018 来创建一种过度产生 Pro 的菌株,该菌株可作为可持续的富含 Pro 的饲料添加剂使用。为了实现这一目标,我们用人工自我克隆的基因簇替换了 OUT30018 的 Ect 生物合成操纵子的编码区,该基因簇编码 Pro 生物合成酶:不敏感突变体γ-谷氨酰激酶(γ-GK)、γ-谷氨酰磷酸还原酶和吡咯啉-5-羧酸还原酶。此外,从基因组中删除了编码 Pro 分解代谢关键酶的基因,从而生成 HN6。虽然 Ect 缺陷型 KA1 不能在含有超过 4%NaCl 的最小培养基中生长,但 HN6 在含有 8%NaCl 的培养基中茁壮成长,通过在细胞中积累 Pro 而不是 Ect 来达到目的,细胞中 Pro 的浓度达到 353.1±40.5µmol/g 细胞鲜重,与 OUT30018 响应盐胁迫时积累的 Ect 相当。凭借其遗传背景,HN6 有可能被开发成富含 Pro 的细胞工厂,将生物质废物转化为单细胞饲料添加剂,为更可持续的水产养殖行业做出贡献。重要性我们在这里报告了 Pro 生物合成的证据,可将其用作缺乏章鱼胺的的主要渗透剂。值得注意的是,HN6 中积累的 Pro 浓度与 OUT30018 响应高盐胁迫时积累的章鱼胺相当。我们还发现,在设计为类似于两种已知的不敏感反馈抑制γ-GK 和 γ-GK 的两种 γ-谷氨酰激酶突变体(γ-GK 和 γ-GK)中,只有 γ-GK 突变体对 Pro 的反馈抑制不敏感。由于 Pro 是家禽和水产养殖行业的必需饲料添加剂之一,因此工程化 HN6 的遗传组成将允许可持续地将高盐度废物生物质转化为富含 Pro 的单细胞生态饲料。

相似文献

4
Enhanced accumulation of γ-aminobutyric acid by deletion of aminotransferase genes involved in γ-aminobutyric acid catabolism in engineered .
Appl Environ Microbiol. 2024 Sep 18;90(9):e0073424. doi: 10.1128/aem.00734-24. Epub 2024 Aug 12.
5
A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581 T.
Environ Microbiol. 2011 Aug;13(8):1973-94. doi: 10.1111/j.1462-2920.2010.02336.x. Epub 2010 Sep 16.
8
High ectoine production by an engineered Halomonas hydrothermalis Y2 in a reduced salinity medium.
Microb Cell Fact. 2019 Oct 26;18(1):184. doi: 10.1186/s12934-019-1230-x.
9
Ectoine production from lignocellulosic biomass-derived sugars by engineered Halomonas elongata.
Bioresour Technol. 2013 Aug;142:523-9. doi: 10.1016/j.biortech.2013.05.004. Epub 2013 May 10.

引用本文的文献

1
Transformative strategies for saline soil restoration: Harnessing halotolerant microorganisms and advanced technologies.
World J Microbiol Biotechnol. 2025 Apr 28;41(5):140. doi: 10.1007/s11274-025-04342-6.

本文引用的文献

2
Metabolic engineering strategy for synthetizing trans-4-hydroxy-L-proline in microorganisms.
Microb Cell Fact. 2021 Apr 21;20(1):87. doi: 10.1186/s12934-021-01579-2.
3
Engineering endogenous l-proline biosynthetic pathway to boost trans-4-hydroxy-l-proline production in Escherichia coli.
J Biotechnol. 2021 Mar 10;329:104-117. doi: 10.1016/j.jbiotec.2021.01.015. Epub 2021 Feb 1.
4
Anaplerotic Pathways in : The Role of the Sodium Gradient.
Front Microbiol. 2020 Sep 25;11:561800. doi: 10.3389/fmicb.2020.561800. eCollection 2020.
5
Effects of a novel variant of the yeast γ-glutamyl kinase Pro1 on its enzymatic activity and sake brewing.
J Ind Microbiol Biotechnol. 2020 Oct;47(9-10):715-723. doi: 10.1007/s10295-020-02297-1. Epub 2020 Aug 3.
6
Significantly enhancing production of -4-hydroxy-l-proline by integrated system engineering in .
Sci Adv. 2020 May 22;6(21):eaba2383. doi: 10.1126/sciadv.aba2383. eCollection 2020 May.
7
Chassis engineering of Escherichia coli for trans-4-hydroxy-l-proline production.
Microb Biotechnol. 2021 Mar;14(2):392-402. doi: 10.1111/1751-7915.13573. Epub 2020 May 12.
9
Efficient production of trans-4-Hydroxy-l-proline from glucose by metabolic engineering of recombinant Escherichia coli.
Lett Appl Microbiol. 2018 May;66(5):400-408. doi: 10.1111/lam.12864. Epub 2018 Mar 9.
10
Identification of Trans-4-Hydroxy-L-Proline as a Compatible Solute and Its Biosynthesis and Molecular Characterization in .
Front Microbiol. 2017 Oct 20;8:2054. doi: 10.3389/fmicb.2017.02054. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验