Suppr超能文献

脊髓损伤中的星形胶质细胞-神经元相互作用。

Astrocyte-Neuron Interactions in Spinal Cord Injury.

机构信息

Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA.

出版信息

Adv Neurobiol. 2024;39:213-231. doi: 10.1007/978-3-031-64839-7_9.

Abstract

Spinal cord injuries cause irreversible loss of sensory and motor functions. In mammals, intrinsic and extrinsic inhibitions of neuronal regeneration obstruct neural repair after spinal cord injury. Although astrocytes have been involved in a growing list of vital homeostatic functions in the nervous system, their roles after injury have fascinated and puzzled scientists for decades. Astrocytes undergo long-lasting morphological and functional changes after injury, referred to as reactive astrogliosis. Although reactive astrogliosis is required to contain spinal cord lesions and restore the blood-spinal cord barrier, reactive astrocytes have detrimental effects that inhibit neuronal repair and remyelination. Intriguingly, elevated regenerative capacity is preserved in some non-mammalian vertebrates, where astrocyte-like glial cells display exclusively pro-regenerative effects after injury. A detailed molecular and phenotypic catalog of the continuum of astrocyte reactivity states is an essential first step toward the development of glial cell manipulations for spinal cord repair.

摘要

脊髓损伤会导致感觉和运动功能的不可逆转丧失。在哺乳动物中,神经元再生的内在和外在抑制阻碍了脊髓损伤后的神经修复。尽管星形胶质细胞在神经系统的许多重要的稳态功能中发挥作用,但它们在损伤后的作用几十年来一直令科学家着迷和困惑。星形胶质细胞在损伤后会发生持久的形态和功能变化,称为反应性星形胶质增生。尽管反应性星形胶质增生是为了控制脊髓损伤并恢复血脊髓屏障所必需的,但反应性星形胶质细胞具有抑制神经元修复和髓鞘再生的有害作用。有趣的是,在一些非哺乳动物的脊椎动物中,再生能力得以保留,其中星形胶质细胞样胶质细胞在损伤后仅表现出促进再生的作用。详细的分子和表型图谱描绘了星形胶质细胞反应性状态的连续体,这是开发用于脊髓修复的胶质细胞操作的重要第一步。

相似文献

1
Astrocyte-Neuron Interactions in Spinal Cord Injury.
Adv Neurobiol. 2024;39:213-231. doi: 10.1007/978-3-031-64839-7_9.
2
Astrocyte reactivity and astrogliosis after spinal cord injury.
Neurosci Res. 2018 Jan;126:39-43. doi: 10.1016/j.neures.2017.10.004. Epub 2017 Oct 17.
3
EphA4 Obstructs Spinal Cord Neuron Regeneration by Promoting Excessive Activation of Astrocytes.
Cell Mol Neurobiol. 2022 Jul;42(5):1557-1568. doi: 10.1007/s10571-021-01046-x. Epub 2021 Feb 17.
5
Astrocytic YAP Promotes the Formation of Glia Scars and Neural Regeneration after Spinal Cord Injury.
J Neurosci. 2020 Mar 25;40(13):2644-2662. doi: 10.1523/JNEUROSCI.2229-19.2020. Epub 2020 Feb 17.
6
Reactive astrogliosis after spinal cord injury-beneficial and detrimental effects.
Mol Neurobiol. 2012 Oct;46(2):251-64. doi: 10.1007/s12035-012-8287-4. Epub 2012 Jun 9.
7
The Role of Inflammatory Cascade and Reactive Astrogliosis in Glial Scar Formation Post-spinal Cord Injury.
Cell Mol Neurobiol. 2024 Nov 23;44(1):78. doi: 10.1007/s10571-024-01519-9.
10
Glial scar survives until the chronic phase by recruiting scar-forming astrocytes after spinal cord injury.
Exp Neurol. 2023 Jan;359:114264. doi: 10.1016/j.expneurol.2022.114264. Epub 2022 Nov 3.

引用本文的文献

1
Mechanisms underpinning spontaneous spinal cord regeneration.
Development. 2025 Oct 15;152(20). doi: 10.1242/dev.204790. Epub 2025 Jul 30.
2
SOX Genes in Spinal Cord Injury: Redefining Neural Stem Cell Regeneration Strategies.
Mol Neurobiol. 2025 Mar 29. doi: 10.1007/s12035-025-04882-w.
3
Plasticity meets regeneration during innate spinal cord repair.
Neural Regen Res. 2026 Mar 1;21(3):1136-1137. doi: 10.4103/NRR.NRR-D-24-01197. Epub 2025 Mar 25.

本文引用的文献

1
Spinal cord injury: global burden from 1990 to 2019 and projections up to 2030 using Bayesian age-period-cohort analysis.
Front Neurol. 2023 Dec 5;14:1304153. doi: 10.3389/fneur.2023.1304153. eCollection 2023.
2
Traumatic spinal cord injury: acute phase treatment in critical care.
Curr Opin Crit Care. 2023 Dec 1;29(6):659-665. doi: 10.1097/MCC.0000000000001110. Epub 2023 Oct 12.
3
System failure: Systemic inflammation following spinal cord injury.
Eur J Immunol. 2024 Jan;54(1):e2250274. doi: 10.1002/eji.202250274. Epub 2023 Oct 19.
4
Recovery of walking after paralysis by regenerating characterized neurons to their natural target region.
Science. 2023 Sep 22;381(6664):1338-1345. doi: 10.1126/science.adi6412. Epub 2023 Sep 21.
5
A Systematic Review of the Interventions for Management of Pain in Patients After Spinal Cord Injury.
Cureus. 2023 Jul 29;15(7):e42657. doi: 10.7759/cureus.42657. eCollection 2023 Jul.
6
The Role of Aquaporins in Spinal Cord Injury.
Cells. 2023 Jun 23;12(13):1701. doi: 10.3390/cells12131701.
7
Tackling the glial scar in spinal cord regeneration: new discoveries and future directions.
Front Cell Neurosci. 2023 May 24;17:1180825. doi: 10.3389/fncel.2023.1180825. eCollection 2023.
8
Progenitor-derived glia are required for spinal cord regeneration in zebrafish.
Development. 2023 May 15;150(10). doi: 10.1242/dev.201162. Epub 2023 May 22.
9
Myostatin is a negative regulator of adult neurogenesis after spinal cord injury in zebrafish.
Cell Rep. 2022 Nov 22;41(8):111705. doi: 10.1016/j.celrep.2022.111705.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验