Qi Zhaoyang, Cai Mingxue, Hao Bo, Cao Yanfei, Su Lin, Liu Xurui, Chan Kai Fung, Yang Chenguang, Zhang Li
IEEE Trans Cybern. 2024 Dec;54(12):7629-7641. doi: 10.1109/TCYB.2024.3439708. Epub 2024 Nov 27.
Precise trajectory control is imperative to ensure the safety and efficacy of in vivo therapy employing the magnetic helical millirobots. However, achieving accurate 3-D path following of helical millirobots under fluid flow conditions remains challenging due to the presence of the lumped disturbances, encompassing complex fluid dynamics and input frequency saturation. This study proposes a robust 3-D path following control framework that combines a disturbance observer for perturbation estimation with an adaptive finite-time sliding mode controller for autonomous navigation along the reference trajectories. First, a magnetic helical millirobot's kinematic model based on the 3-D hand position approach is established. Subsequently, a robust smooth differentiator is implemented as an observer to estimate disturbances within a finite time. We then investigate an adaptive finite-time sliding mode controller incorporating an auxiliary system to mitigate the estimated disturbance and achieve precise 3-D path tracking while respecting the input constraints. The adaptive mechanism of this controller ensures fast convergence of the system while alleviating the chattering effects. Finally, we provide a rigorous theoretical analysis of the finite-time stability of the closed-loop system based on the Lyapunov functions. Utilizing a robotically-actuated magnetic manipulation system, experimental results demonstrate the efficacy of the proposed approach in terms of the control accuracy and convergence time.
精确的轨迹控制对于确保使用磁性螺旋微型机器人进行体内治疗的安全性和有效性至关重要。然而,由于存在集总干扰,包括复杂的流体动力学和输入频率饱和,在流体流动条件下实现螺旋微型机器人的精确三维路径跟踪仍然具有挑战性。本研究提出了一种鲁棒的三维路径跟踪控制框架,该框架将用于扰动估计的干扰观测器与用于沿参考轨迹自主导航的自适应有限时间滑模控制器相结合。首先,基于三维手部位置方法建立了磁性螺旋微型机器人的运动学模型。随后,实现了一种鲁棒平滑微分器作为观测器,以在有限时间内估计干扰。然后,我们研究了一种自适应有限时间滑模控制器,该控制器结合了一个辅助系统,以减轻估计的干扰,并在考虑输入约束的情况下实现精确的三维路径跟踪。该控制器的自适应机制确保了系统的快速收敛,同时减轻了抖振效应。最后,我们基于李雅普诺夫函数对闭环系统的有限时间稳定性进行了严格的理论分析。利用机器人驱动的磁操纵系统,实验结果证明了所提方法在控制精度和收敛时间方面的有效性。