Kennedy Megan S, Freiburger Andrew, Cooper Michael, Beilsmith Kathleen, St George Marissa L, Kalski Martin, Cham Candace, Guzzetta Alex, Ng Siew C, Chan Francis K, Rubin David, Henry Chris S, Bergelson Joy, Chang Eugene B
bioRxiv. 2024 Aug 1:2024.08.01.606245. doi: 10.1101/2024.08.01.606245.
High-fat, low-fiber Western-style diets (WD) induce microbiome dysbiosis characterized by reduced taxonomic diversity and metabolic breadth, which in turn increases risk for a wide array of metabolic, immune and systemic pathologies. Recent work has established that WD can impair microbiome resilience to acute perturbations like antibiotic treatment, although we know little about the mechanism of impairment and the specific host consequences of prolonged post-antibiotic dysbiosis. Here, we characterize the trajectory by which the gut microbiome recovers its taxonomic and functional profile after antibiotic treatment in mice on regular chow (RC) and WD, and find that only mice on RC undergo a rapid successional process of recovery. Metabolic modeling indicates that RC diet promotes the development of syntrophic cross-feeding interactions, while on WD, a dominant taxon monopolizes readily available resources without releasing syntrophic byproducts. Intervention experiments reveal that an appropriate dietary resource environment is both necessary and sufficient for rapid and robust microbiome recovery, whereas microbial transplant is neither. Furthermore, prolonged post-antibiotic dysbiosis in mice on WD renders them susceptible to infection by the intestinal pathogen Salmonella enterica serovar Typhimurium. Our data challenge widespread enthusiasm for fecal microbiota transplant (FMT) as a strategy to address dysbiosis and demonstrate that specific dietary interventions are, at minimum, an essential prerequisite for effective FMT, and may afford a safer, more natural, and less invasive alternative to FMT.
高脂肪、低纤维的西式饮食(WD)会导致微生物群失调,其特征是分类多样性和代谢广度降低,进而增加了一系列代谢、免疫和全身性疾病的风险。最近的研究表明,WD会损害微生物群对抗生素治疗等急性干扰的恢复能力,尽管我们对这种损害机制以及抗生素治疗后长期菌群失调对宿主的具体影响知之甚少。在这里,我们描述了正常饮食(RC)和WD喂养的小鼠在抗生素治疗后肠道微生物群恢复其分类和功能特征的轨迹,发现只有RC组小鼠经历了快速的恢复演替过程。代谢模型表明,RC饮食促进了互营共生交叉喂养相互作用的发展,而在WD饮食中,一个优势分类群垄断了容易获得的资源,而不释放互营共生副产物。干预实验表明,合适的饮食资源环境对于微生物群的快速和强劲恢复既是必要的也是充分的,而微生物移植则不然。此外,WD喂养的小鼠抗生素治疗后长期菌群失调使它们易受肠道病原体鼠伤寒沙门氏菌感染。我们的数据对将粪便微生物群移植(FMT)作为解决菌群失调的策略的广泛热情提出了挑战,并表明特定的饮食干预至少是有效FMT的必要前提,并且可能提供一种比FMT更安全、更自然、侵入性更小的替代方法。