Suppr超能文献

张量积算法在传染病接触网络推断中的应用。

Tensor product algorithms for inference of contact network from epidemiological data.

机构信息

University of Bath, Claverton Down, Bath, BA2 7AY, UK.

University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.

出版信息

BMC Bioinformatics. 2024 Sep 2;25(1):285. doi: 10.1186/s12859-024-05910-7.

Abstract

We consider a problem of inferring contact network from nodal states observed during an epidemiological process. In a black-box Bayesian optimisation framework this problem reduces to a discrete likelihood optimisation over the set of possible networks. The cardinality of this set grows combinatorially with the number of network nodes, which makes this optimisation computationally challenging. For each network, its likelihood is the probability for the observed data to appear during the evolution of the epidemiological process on this network. This probability can be very small, particularly if the network is significantly different from the ground truth network, from which the observed data actually appear. A commonly used stochastic simulation algorithm struggles to recover rare events and hence to estimate small probabilities and likelihoods. In this paper we replace the stochastic simulation with solving the chemical master equation for the probabilities of all network states. Since this equation also suffers from the curse of dimensionality, we apply tensor train approximations to overcome it and enable fast and accurate computations. Numerical simulations demonstrate efficient black-box Bayesian inference of the network.

摘要

我们考虑了从流行病学过程中观察到的节点状态推断接触网络的问题。在黑盒贝叶斯优化框架中,这个问题简化为对可能网络的离散似然优化。这个集合的基数随着网络节点数量的组合增长,这使得这个优化在计算上具有挑战性。对于每个网络,其似然是观察数据在该网络上的流行病学过程演化过程中出现的概率。如果网络与实际出现观察数据的真实网络有很大差异,那么这个概率可能非常小。常用的随机模拟算法难以恢复罕见事件,因此难以估计小概率和似然。在本文中,我们用求解所有网络状态概率的化学主方程代替随机模拟。由于这个方程也受到维度诅咒的影响,我们应用张量火车逼近来克服它,并实现快速和准确的计算。数值模拟证明了网络的有效黑盒贝叶斯推断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67e5/11370089/f0036ea51d2e/12859_2024_5910_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验