Suppr超能文献

基于指纹和物理的机器学习模型联合预测对 MATE1 转运蛋白的抑制活性。

Prediction of Inhibitory Activity against the MATE1 Transporter via Combined Fingerprint- and Physics-Based Machine Learning Models.

机构信息

Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.

Toxicology & DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan.

出版信息

J Chem Inf Model. 2024 Sep 23;64(18):7068-7076. doi: 10.1021/acs.jcim.4c00921. Epub 2024 Sep 10.

Abstract

Renal secretion plays an important role in excretion of drug from the kidney. Two major transporters known to be highly involved in renal secretion are MATE1/2 K and OCT2, the former of which is highly related to drug-drug interactions. Among published in silico models for MATE inhibitors, a previous model obtained a ROC-AUC value of 0.78 using high throughput percentage inhibition data [ , (3), 781-795] which we aimed to improve upon here using a combined fingerprint and physics-based approach. To this end, we collected 225 publicly available compounds with pIC50 values against MATE1. Subsequently, on the one hand, we performed a physics-based approach using an Alpha-Fold protein structure, from which we obtained MM-GB/SA scores for those compounds. On the other hand, we built Random Forest (RF) and message passing neural network models using extended-connectivity fingerprints with radius 4 (ECFP4) and chemical structures as graphs, respectively, which also included MM-GB/SA scores as input variables. In a five-fold cross-validation with a separate test set, we found that the best predictivity for the hold-out test was observed in the RF model (including ECFP4 and MM-GB/SA data) with an ROC-AUC of 0.833 ± 0.036; while that of the MM-GB/SA regression model was 0.742. However, the MM-GB/SA model did not show a dependency of the performance on the particular chemical space being predicted. Additionally, via structural interaction fingerprint analysis, we identified interacting residues with inhibitor as identical for those with noninhibitors, including substrates, such as Gln49, Trp274, Tyr277, Tyr299, Ile303, and Tyr306. The similar binding modes are consistent with the observed similar IC50 value inhibitor when using different substrates experimentally, and practically, this can release the experimental scientists from bothering of selecting substrates for MATE1. Hence, we were able to build highly predictive classification models for MATE1 inhibitory activity with both ECFP4 and MM-GB/SA score as input features, which is fit-for-purpose for use in the drug discovery process.

摘要

肾脏分泌在药物从肾脏排泄中起着重要作用。已知两种主要的转运体在肾脏分泌中高度参与,即 MATE1/2K 和 OCT2,前者与药物相互作用高度相关。在已发表的 MATE 抑制剂计算模型中,先前的模型使用高通量百分比抑制数据获得了 ROC-AUC 值为 0.78[, (3), 781-795],我们旨在通过结合指纹和基于物理的方法在此基础上进行改进。为此,我们收集了 225 种具有针对 MATE1 的 pIC50 值的公开化合物。随后,一方面,我们使用 Alpha-Fold 蛋白质结构进行基于物理的方法,从中获得了这些化合物的 MM-GB/SA 评分。另一方面,我们分别使用扩展连接指纹(radius 4,ECFP4)和化学结构作为图的随机森林(RF)和消息传递神经网络(MPNN)模型构建模型,其中还包括 MM-GB/SA 评分作为输入变量。在具有单独测试集的五重交叉验证中,我们发现保留测试的最佳预测性出现在包括 ECFP4 和 MM-GB/SA 数据的 RF 模型中,ROC-AUC 为 0.833±0.036;而 MM-GB/SA 回归模型的 ROC-AUC 为 0.742。然而,MM-GB/SA 模型并未显示出性能对所预测的特定化学空间的依赖性。此外,通过结构相互作用指纹分析,我们确定了与抑制剂相互作用的残基与非抑制剂(包括底物)相同,例如 Gln49、Trp274、Tyr277、Tyr299、Ile303 和 Tyr306。类似的结合模式与观察到的使用不同底物的抑制剂的相似 IC50 值一致,实际上,这可以使实验科学家免于为 MATE1 选择底物而烦恼。因此,我们能够使用 ECFP4 和 MM-GB/SA 评分作为输入特征为 MATE1 抑制活性构建高度可预测的分类模型,这非常适合用于药物发现过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdba/11423340/3110e304ec29/ci4c00921_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验