Suppr超能文献

示意图:亚微米分辨率空间转录组学的可扩展无分割分析。

FICTURE: scalable segmentation-free analysis of submicron-resolution spatial transcriptomics.

机构信息

Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA.

Department of Genetics, Harvard Medical School, Boston, MA, USA.

出版信息

Nat Methods. 2024 Oct;21(10):1843-1854. doi: 10.1038/s41592-024-02415-2. Epub 2024 Sep 12.

Abstract

Spatial transcriptomics (ST) technologies have advanced to enable transcriptome-wide gene expression analysis at submicron resolution over large areas. However, analysis of high-resolution ST is often challenged by complex tissue structure, where existing cell segmentation methods struggle due to the irregular cell sizes and shapes, and by the absence of segmentation-free methods scalable to whole-transcriptome analysis. Here we present FICTURE (Factor Inference of Cartographic Transcriptome at Ultra-high REsolution), a segmentation-free spatial factorization method that can handle transcriptome-wide data labeled with billions of submicron-resolution spatial coordinates and is compatible with both sequencing-based and imaging-based ST data. FICTURE uses the multilayered Dirichlet model for stochastic variational inference of pixel-level spatial factors, and is orders of magnitude more efficient than existing methods. FICTURE reveals the microscopic ST architecture for challenging tissues, such as vascular, fibrotic, muscular and lipid-laden areas in real data where previous methods failed. FICTURE's cross-platform generality, scalability and precision make it a powerful tool for exploring high-resolution ST.

摘要

空间转录组学 (ST) 技术已经取得了进展,能够在亚微米分辨率的大面积范围内进行全转录组基因表达分析。然而,高分辨率 ST 的分析常常受到复杂组织结构的挑战,由于细胞大小和形状不规则,现有的细胞分割方法存在困难,并且缺乏可扩展到全转录组分析的无分割方法。在这里,我们提出了 FICTURE(超高分辨率地图转录组的因子推断),这是一种无分割的空间因子化方法,可以处理标记有数十亿个亚微米分辨率空间坐标的全转录组数据,并且与基于测序和基于成像的 ST 数据兼容。FICTURE 使用多层狄利克雷模型进行像素级空间因子的随机变分推断,效率比现有方法高出几个数量级。FICTURE 揭示了具有挑战性的组织的微观 ST 结构,例如真实数据中血管、纤维化、肌肉和富含脂质的区域,而以前的方法在此类区域无法使用。FICTURE 的跨平台通用性、可扩展性和精度使其成为探索高分辨率 ST 的强大工具。

相似文献

1
FICTURE: scalable segmentation-free analysis of submicron-resolution spatial transcriptomics.
Nat Methods. 2024 Oct;21(10):1843-1854. doi: 10.1038/s41592-024-02415-2. Epub 2024 Sep 12.
2
Scalable segmentation-free analysis of submicron resolution spatial transcriptomics.
bioRxiv. 2023 Nov 7:2023.11.04.565621. doi: 10.1101/2023.11.04.565621.
3
Computational solutions for spatial transcriptomics.
Comput Struct Biotechnol J. 2022 Sep 1;20:4870-4884. doi: 10.1016/j.csbj.2022.08.043. eCollection 2022.
4
ST-CellSeg: Cell segmentation for imaging-based spatial transcriptomics using multi-scale manifold learning.
PLoS Comput Biol. 2024 Jun 27;20(6):e1012254. doi: 10.1371/journal.pcbi.1012254. eCollection 2024 Jun.
6
Inferring super-resolution tissue architecture by integrating spatial transcriptomics with histology.
Nat Biotechnol. 2024 Sep;42(9):1372-1377. doi: 10.1038/s41587-023-02019-9. Epub 2024 Jan 2.
7
A point cloud segmentation framework for image-based spatial transcriptomics.
Commun Biol. 2024 Jul 6;7(1):823. doi: 10.1038/s42003-024-06480-3.
8
TIST: Transcriptome and Histopathological Image Integrative Analysis for Spatial Transcriptomics.
Genomics Proteomics Bioinformatics. 2022 Oct;20(5):974-988. doi: 10.1016/j.gpb.2022.11.012. Epub 2022 Dec 19.
9
Nova-ST: Nano-patterned ultra-dense platform for spatial transcriptomics.
Cell Rep Methods. 2024 Aug 19;4(8):100831. doi: 10.1016/j.crmeth.2024.100831. Epub 2024 Aug 6.
10

引用本文的文献

1
Single-cell spatial transcriptomics unravels the cellular landscape of abdominal aortic aneurysm.
JCI Insight. 2025 Aug 22;10(16). doi: 10.1172/jci.insight.190534.
2
Using transcripts to refine image based cell segmentation with FastReseg.
Sci Rep. 2025 Aug 20;15(1):30508. doi: 10.1038/s41598-025-08733-5.
3
RESCUE: recovery of idiosyncratic expression patterns in spatial transcriptomics.
bioRxiv. 2025 Aug 15:2025.08.11.669542. doi: 10.1101/2025.08.11.669542.
4
High-definition spatial transcriptomic profiling of immune cell populations in colorectal cancer.
Nat Genet. 2025 Jun;57(6):1512-1523. doi: 10.1038/s41588-025-02193-3. Epub 2025 Jun 5.
6
8
Seq-Scope-eXpanded: Spatial Omics Beyond Optical Resolution.
bioRxiv. 2025 Feb 8:2025.02.04.636355. doi: 10.1101/2025.02.04.636355.
9
Sainsc: A Computational Tool for Segmentation-Free Analysis of In Situ Capture Data.
Small Methods. 2025 May;9(5):e2401123. doi: 10.1002/smtd.202401123. Epub 2024 Nov 12.
10
Seq-Scope: repurposing Illumina sequencing flow cells for high-resolution spatial transcriptomics.
Nat Protoc. 2025 Mar;20(3):643-689. doi: 10.1038/s41596-024-01065-0. Epub 2024 Oct 31.

本文引用的文献

1
The dawn of spatial omics.
Science. 2023 Aug 4;381(6657):eabq4964. doi: 10.1126/science.abq4964.
2
Robust phenotyping of highly multiplexed tissue imaging data using pixel-level clustering.
Nat Commun. 2023 Aug 1;14(1):4618. doi: 10.1038/s41467-023-40068-5.
3
4
Continuous germinal center invasion contributes to the diversity of the immune response.
Cell. 2023 Jan 5;186(1):147-161.e15. doi: 10.1016/j.cell.2022.11.032. Epub 2022 Dec 23.
5
Polony gels enable amplifiable DNA stamping and spatial transcriptomics of chronic pain.
Cell. 2022 Nov 23;185(24):4621-4633.e17. doi: 10.1016/j.cell.2022.10.021. Epub 2022 Nov 10.
6
STtools: A Comprehensive Software Pipeline for Ultra-high Resolution Spatial Transcriptomics Data.
Bioinform Adv. 2022;2(1). doi: 10.1093/bioadv/vbac061. Epub 2022 Sep 1.
7
High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging.
Nat Biotechnol. 2022 Dec;40(12):1794-1806. doi: 10.1038/s41587-022-01483-z. Epub 2022 Oct 6.
8
TREM2 macrophages induced by human lipids drive inflammation in acne lesions.
Sci Immunol. 2022 Jul 22;7(73):eabo2787. doi: 10.1126/sciimmunol.abo2787.
10
Squidpy: a scalable framework for spatial omics analysis.
Nat Methods. 2022 Feb;19(2):171-178. doi: 10.1038/s41592-021-01358-2. Epub 2022 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验