Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China.
Department of Mechanical and Automotive Engineering, Royal Melbourne Institute of Technology, Melbourne, VIC 3000, Australia.
J Colloid Interface Sci. 2025 Jan 15;678(Pt B):1088-1103. doi: 10.1016/j.jcis.2024.09.020. Epub 2024 Sep 5.
One of the primary challenges for immune checkpoint blockade (ICB)-based therapy is the limited infiltration of T lymphocytes (T cells) into tumors, often referred to as immunologically "cold" tumors. A promising strategy to enhance the anti-tumor efficacy of ICB is to increase antigen exposure, thereby enhancing T cell activation and converting "cold" tumors into "hot" ones. Herein, we present an innovative all-in-one therapeutic nanoplatform to realize local mild photothermal- and photodynamic-triggered antigen exposure, thereby improving the anti-tumor efficacy of ICB. This nanoplatform involves conjugating programmed death-ligand 1 antibody (aPD-L1) with gadolinium-doped near-infrared (NIR)-emitting carbon dots (aPD-L1@GdCDs), which displays negligible cytotoxicity in the absence of light. But under controlled NIR laser irradiation, the GdCDs produce combined photothermal and photodynamic effects. This not only results in tumor ablation but also induces immunogenic cell death (ICD), facilitating enhanced infiltration of CD8 T cells in the tumor area. Importantly, the combination of aPD-L1 with photothermal and photodynamic therapies via aPD-L1@GdCDs significantly boosts CD8 T cell infiltration, reduces tumor size, and improves anti-metastasis effects compared to either GdCDs-based phototherapy or aPD-L1 alone. In addition, the whole treatment process can be monitored by multi-modal fluorescence/photoacoustic/magnetic resonance imaging (FLI/PAI/MRI). Our study highlights a promising nanoplatform for cancer diagnosis and therapy, as well as paves the way to promote the efficacy of ICB therapy through mild photothermal- and photodynamic-triggered immunotherapy.
免疫检查点阻断(ICB)为基础的治疗的主要挑战之一是 T 淋巴细胞(T 细胞)浸润到肿瘤中的有限性,通常被称为免疫上的“冷”肿瘤。一种增强 ICB 抗肿瘤疗效的有前途的策略是增加抗原暴露,从而增强 T 细胞激活并将“冷”肿瘤转化为“热”肿瘤。在此,我们提出了一种创新的一体化治疗纳米平台,以实现局部温和的光热和光动力触发的抗原暴露,从而提高 ICB 的抗肿瘤疗效。该纳米平台涉及将程序性死亡配体 1 抗体(aPD-L1)与镧系掺杂近红外(NIR)发射碳点(aPD-L1@GdCDs)缀合,在没有光的情况下几乎没有细胞毒性。但是,在受控的 NIR 激光照射下,GdCDs 产生联合光热和光动力效应。这不仅导致肿瘤消融,而且还诱导免疫原性细胞死亡(ICD),促进 CD8 T 细胞在肿瘤区域的浸润增强。重要的是,通过 aPD-L1@GdCDs 将 aPD-L1 与光热和光动力疗法相结合,与单独的 GdCDs 基光疗或 aPD-L1 相比,显著增强了 CD8 T 细胞的浸润,减小了肿瘤大小,并改善了抗转移效果。此外,整个治疗过程可以通过多模态荧光/光声/磁共振成像(FLI/PAI/MRI)进行监测。我们的研究强调了一种有前途的癌症诊断和治疗的纳米平台,并为通过温和的光热和光动力免疫疗法来提高 ICB 治疗效果铺平了道路。