Suppr超能文献

位置信息在脊椎动物附肢再生过程中调节短暂的再生激活细胞状态。

Positional information modulates transient regeneration-activated cell states during vertebrate appendage regeneration.

作者信息

Ortega Granillo Augusto, Zamora Daniel, Schnittker Robert R, Scott Allison R, Spluga Alessia, Russell Jonathon, Brewster Carolyn E, Ross Eric J, Acheampong Daniel A, Zhang Ning, Ferro Kevin, Morrison Jason A, Rubinstein Boris Y, Perera Anoja G, Wang Wei, Sánchez Alvarado Alejandro

机构信息

Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA.

National Institute of Biological Sciences, 7 Science Park Road ZGC Life Science Park, Beijing 102206, China.

出版信息

iScience. 2024 Aug 21;27(9):110737. doi: 10.1016/j.isci.2024.110737. eCollection 2024 Sep 20.

Abstract

Injury is common in the life of organisms. Because the extent of damage cannot be predicted, injured organisms must determine how much tissue needs to be restored. Although it is known that amputation position affects the regeneration speed of appendages, mechanisms conveying positional information remain unclear. We investigated tissue dynamics in regenerating caudal fins of the African killifish () and found position-specific, differential spatial distribution modulation, persistence, and magnitude of proliferation. Single-cell RNA sequencing revealed a transient regeneration-activated cell state (TRACS) in the basal epidermis that is amplified to match a given amputation position and expresses components and modifiers of the extracellular matrix (ECM). Notably, CRISPR-Cas9-mediated deletion of the ECM modifier () increased the regenerative capacity of distal injuries, suggesting that regeneration growth rate can be uncoupled from amputation position. We propose that basal epidermis TRACS transduce positional information to the regenerating blastema by remodeling the ECM.

摘要

损伤在生物体的生命中很常见。由于损伤程度无法预测,受伤的生物体必须确定需要修复多少组织。虽然已知截肢位置会影响附肢的再生速度,但传递位置信息的机制仍不清楚。我们研究了非洲鳉鱼再生尾鳍中的组织动态,发现了增殖的位置特异性、差异空间分布调节、持续性和大小。单细胞RNA测序揭示了基底表皮中一种短暂的再生激活细胞状态(TRACS),该状态会被放大以匹配给定的截肢位置,并表达细胞外基质(ECM)的成分和修饰因子。值得注意的是,CRISPR-Cas9介导的ECM修饰因子()的缺失增加了远端损伤的再生能力,这表明再生生长速度可以与截肢位置脱钩。我们提出,基底表皮TRACS通过重塑ECM将位置信息传递给再生芽基。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30ed/11404194/95d285a336d5/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验