Suppr超能文献

利用相互作用的感觉基因进行混沌代谢的合理重编程。

Harnessing Interactional Sensory Genes for Rationally Reprogramming Chaotic Metabolism.

作者信息

Tan Chunlin, Xu Ping, Tao Fei

机构信息

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Research (Wash D C). 2022 Dec 21;2022:0017. doi: 10.34133/research.0017. eCollection 2022.

Abstract

Rationally controlling cellular metabolism is of great importance but challenging owing to its highly complex and chaotic nature. Natural existing sensory proteins like histidine kinases (HKs) are understood as "sensitive nodes" of biological networks that can trigger disruptive metabolic reprogramming (MRP) upon perceiving environmental fluctuation. Here, the "sensitive node" genes were adopted to devise a global MRP platform consisting of a CRISPR interference-mediated dual-gene combinational knockdown toolbox and survivorship-based metabolic interaction decoding algorithm. The platform allows users to decode the interfering effects of × gene pairs while only requiring the synthesis of pairs of primers. A total of 35 HK genes and 24 glycine metabolic genes were selected as the targets to determine the effectiveness of our platform in a sp. FA2. The platform was applied to decode the interfering impact of HKs on antibiotic resistance in strain FA2. A pattern of combined knockdown of HK genes ( and ) was demonstrated to be capable of reducing antibiotic resistance of by 108-fold. Patterns of combined knockdown of glycine pathway genes (e.g., and ) and several HK genes (e.g., and ) were also revealed to increase glycine production. Our platform may enable an efficient and rational approach for global MRP based on the elucidation of high-order gene interactions. A web-based 1-stop service (https://smrp.sjtu.edu.cn) is also provided to simplify the implementation of this smart strategy in a broad range of cells.

摘要

合理控制细胞代谢至关重要,但由于其高度复杂和混乱的性质,这一过程颇具挑战性。天然存在的传感蛋白,如组氨酸激酶(HKs),被视为生物网络的“敏感节点”,在感知环境波动时可触发破坏性的代谢重编程(MRP)。在此,采用“敏感节点”基因设计了一个全局MRP平台,该平台由一个CRISPR干扰介导的双基因组合敲低工具箱和基于生存的代谢相互作用解码算法组成。该平台允许用户解码×对基因的干扰效应,而只需要合成对引物。总共选择了35个HK基因和24个甘氨酸代谢基因作为靶点,以确定我们的平台在sp. FA2中的有效性。该平台被应用于解码HKs对菌株FA2中抗生素抗性的干扰影响。HK基因(和)的组合敲低模式被证明能够将的抗生素抗性降低108倍。甘氨酸途径基因(如和)与几个HK基因(如和)的组合敲低模式也被发现可增加甘氨酸的产量。我们的平台可能基于对高阶基因相互作用的阐明,为全局MRP提供一种高效且合理的方法。还提供了一个基于网络的一站式服务(https://smrp.sjtu.edu.cn),以简化在广泛细胞中实施这一智能策略的过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b73b/11407584/359711c346f6/research.0017.fig.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验