Suppr超能文献

基于活性的蛋白质谱分析的配体发现。

Ligand discovery by activity-based protein profiling.

机构信息

Lundbeck La Jolla Research Center Inc., San Diego, CA, USA.

Department of Chemistry, Scripps Research, La Jolla, CA, USA.

出版信息

Cell Chem Biol. 2024 Sep 19;31(9):1636-1651. doi: 10.1016/j.chembiol.2024.08.006.

Abstract

Genomic technologies have led to massive gains in our understanding of human gene function and disease relevance. Chemical biologists are a primary beneficiary of this information, which can guide the prioritization of proteins for chemical probe and drug development. The vast functional and structural diversity of disease-relevant proteins, however, presents challenges for conventional small molecule screening libraries and assay development that in turn raise questions about the broader "druggability" of the human proteome. Here, we posit that activity-based protein profiling (ABPP), by generating global maps of small molecule-protein interactions in native biological systems, is well positioned to address major obstacles in human biology-guided chemical probe and drug discovery. We will support this viewpoint with case studies highlighting a range of small molecule mechanisms illuminated by ABPP that include the disruption and stabilization of biomolecular (protein-protein/nucleic acid) interactions and underscore allostery as a rich source of chemical tools for historically "undruggable" protein classes.

摘要

基因组技术使我们对人类基因功能和疾病相关性有了更深入的了解。化学生物学家是这些信息的主要受益者,这些信息可以指导对蛋白质进行化学探针和药物开发的优先级排序。然而,与疾病相关的蛋白质具有广泛的功能和结构多样性,这给传统的小分子筛选库和测定方法的发展带来了挑战,进而引发了关于人类蛋白质组更广泛的“可成药性”的问题。在这里,我们认为,基于活性的蛋白质分析(ABPP)通过在天然生物系统中生成小分子-蛋白质相互作用的全局图谱,非常适合解决人类生物学指导的化学探针和药物发现中的主要障碍。我们将通过案例研究来支持这一观点,这些研究强调了 ABPP 揭示的一系列小分子机制,包括生物分子(蛋白质-蛋白质/核酸)相互作用的破坏和稳定,并强调变构作用是化学工具的丰富来源,可用于历史上“不可成药”的蛋白质类别。

相似文献

1
Ligand discovery by activity-based protein profiling.
Cell Chem Biol. 2024 Sep 19;31(9):1636-1651. doi: 10.1016/j.chembiol.2024.08.006.
3
Can a Liquid Biopsy Detect Circulating Tumor DNA With Low-passage Whole-genome Sequencing in Patients With a Sarcoma? A Pilot Evaluation.
Clin Orthop Relat Res. 2025 Jan 1;483(1):39-48. doi: 10.1097/CORR.0000000000003161. Epub 2024 Jun 21.
5
Nucleic Acid Nanocapsules as a New Platform to Deliver Therapeutic Nucleic Acids for Gene Regulation.
Acc Chem Res. 2025 Jul 1;58(13):1951-1962. doi: 10.1021/acs.accounts.5c00126. Epub 2025 Jun 9.
6
Systemic treatments for metastatic cutaneous melanoma.
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.
7
Can We Enhance Shared Decision-making for Periacetabular Osteotomy Surgery? A Qualitative Study of Patient Experiences.
Clin Orthop Relat Res. 2025 Jan 1;483(1):120-136. doi: 10.1097/CORR.0000000000003198. Epub 2024 Jul 23.
10
The Lived Experience of Autistic Adults in Employment: A Systematic Search and Synthesis.
Autism Adulthood. 2024 Dec 2;6(4):495-509. doi: 10.1089/aut.2022.0114. eCollection 2024 Dec.

引用本文的文献

1
Complexoform-restricted covalent TRMT112 ligands that allosterically agonize METTL5.
bioRxiv. 2025 May 25:2025.05.25.655995. doi: 10.1101/2025.05.25.655995.
2
Advancing Covalent Ligand and Drug Discovery beyond Cysteine.
Chem Rev. 2025 Jul 23;125(14):6653-6684. doi: 10.1021/acs.chemrev.5c00001. Epub 2025 May 22.
3
4
Proteomic Ligandability Maps of Phosphorus(V) Stereoprobes Identify Covalent TLCD1 Inhibitors.
bioRxiv. 2025 Jan 31:2025.01.31.635883. doi: 10.1101/2025.01.31.635883.
5
Implications of frequent hitter E3 ligases in targeted protein degradation screens.
Nat Chem Biol. 2025 Apr;21(4):474-481. doi: 10.1038/s41589-024-01821-z. Epub 2025 Jan 27.
6
Covalent Proximity Inducers.
Chem Rev. 2025 Jan 8;125(1):326-368. doi: 10.1021/acs.chemrev.4c00570. Epub 2024 Dec 18.

本文引用的文献

1
Chemical tools to expand the ligandable proteome: Diversity-oriented synthesis-based photoreactive stereoprobes.
Cell Chem Biol. 2024 Dec 19;31(12):2138-2155.e32. doi: 10.1016/j.chembiol.2024.10.005. Epub 2024 Nov 14.
2
Redirecting the pioneering function of FOXA1 with covalent small molecules.
Mol Cell. 2024 Nov 7;84(21):4125-4141.e10. doi: 10.1016/j.molcel.2024.09.024. Epub 2024 Oct 15.
3
An allosteric cyclin E-CDK2 site mapped by paralog hopping with covalent probes.
Nat Chem Biol. 2025 Mar;21(3):420-431. doi: 10.1038/s41589-024-01738-7. Epub 2024 Sep 18.
4
Multi-tiered chemical proteomic maps of tryptoline acrylamide-protein interactions in cancer cells.
Nat Chem. 2024 Oct;16(10):1592-1604. doi: 10.1038/s41557-024-01601-1. Epub 2024 Aug 13.
5
DCAF16-Based Covalent Handle for the Rational Design of Monovalent Degraders.
ACS Cent Sci. 2024 May 17;10(7):1318-1331. doi: 10.1021/acscentsci.4c00286. eCollection 2024 Jul 24.
6
A CRISPR activation screen identifies FBXO22 supporting targeted protein degradation.
Nat Chem Biol. 2024 Dec;20(12):1608-1616. doi: 10.1038/s41589-024-01655-9. Epub 2024 Jul 4.
7
Covalent Degrader of the Oncogenic Transcription Factor β-Catenin.
J Am Chem Soc. 2024 Jun 6. doi: 10.1021/jacs.4c05174.
8
Asciminib in Newly Diagnosed Chronic Myeloid Leukemia.
N Engl J Med. 2024 Sep 12;391(10):885-898. doi: 10.1056/NEJMoa2400858. Epub 2024 May 31.
9
Emerging and Re-emerging Warheads for Targeted Covalent Inhibitors: An Update.
J Med Chem. 2024 May 23;67(10):7668-7758. doi: 10.1021/acs.jmedchem.3c01825. Epub 2024 May 6.
10
Machine Learning Models to Interrogate Proteome-Wide Covalent Ligandabilities Directed at Cysteines.
JACS Au. 2024 Apr 5;4(4):1374-1384. doi: 10.1021/jacsau.3c00749. eCollection 2024 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验