Gutierrez Juan-José Giraldo, Lau Evelyn, Dharmapalan Subhashini, Parker Melody, Chen Yurui, Álvarez Mauricio A, Wang Dennis
National Heart and Lung Institute, Imperial College London, London, UK.
Department of Computer Science, The University of Sheffield, Sheffield, UK.
NPJ Precis Oncol. 2024 Sep 20;8(1):209. doi: 10.1038/s41698-024-00691-x.
Drug response prediction is hampered by uncertainty in the measures of response and selection of doses. In this study, we propose a probabilistic multi-output model to simultaneously predict all dose-responses and uncover their biomarkers. By describing the relationship between genomic features and chemical properties to every response at every dose, our multi-output Gaussian Process (MOGP) models enable assessment of drug efficacy using any dose-response metric. This approach was tested across two drug screening studies and ten cancer types. Kullback-leibler divergence measured the importance of each feature and identified EZH2 gene as a novel biomarker of BRAF inhibitor response. We demonstrate the effectiveness of our MOGP models in accurately predicting dose-responses in different cancer types and when there is a limited number of drug screening experiments for training. Our findings highlight the potential of MOGP models in enhancing drug development pipelines by reducing data requirements and improving precision in dose-response predictions.
药物反应预测受到反应测量和剂量选择不确定性的阻碍。在本研究中,我们提出了一种概率多输出模型,以同时预测所有剂量反应并揭示其生物标志物。通过描述基因组特征与每种剂量下每种反应的化学性质之间的关系,我们的多输出高斯过程(MOGP)模型能够使用任何剂量反应指标来评估药物疗效。该方法在两项药物筛选研究和十种癌症类型中进行了测试。库尔贝克-莱布勒散度衡量了每个特征的重要性,并将EZH2基因确定为BRAF抑制剂反应的一种新型生物标志物。我们证明了我们的MOGP模型在准确预测不同癌症类型的剂量反应以及训练用药物筛选实验数量有限时的有效性。我们的研究结果突出了MOGP模型在通过减少数据需求和提高剂量反应预测精度来加强药物开发流程方面的潜力。