School of Biosciences, University of Sheffield, Sheffield, UK.
INSERM, Institute de Myologie, Centre de Recherche en Myologie F-75013, Sorbonne Université, Paris, France.
J Physiol. 2024 Oct;602(20):5329-5351. doi: 10.1113/JP286134. Epub 2024 Sep 26.
Spiral ganglion neurons (SGNs) are primary sensory afferent neurons that relay acoustic information from the cochlear inner hair cells (IHCs) to the brainstem. The response properties of different SGNs diverge to represent a wide range of sound intensities in an action-potential code. This biophysical heterogeneity is established during pre-hearing stages of development, a time when IHCs fire spontaneous Ca action potentials that drive glutamate release from their ribbon synapses onto the SGN terminals. The role of spontaneous IHC activity in the refinement of SGN characteristics is still largely unknown. Using pre-hearing otoferlin knockout mice (Otof), in which Ca-dependent exocytosis in IHCs is abolished, we found that developing SGNs fail to upregulate low-voltage-activated K-channels and hyperpolarisation-activated cyclic-nucleotide-gated channels. This delayed maturation resulted in hyperexcitable SGNs with immature firing characteristics. We have also shown that SGNs that synapse with the pillar side of the IHCs selectively express a resurgent K current, highlighting a novel biophysical marker for these neurons. RNA-sequencing showed that several K channels are downregulated in Otof mice, further supporting the electrophysiological recordings. Our data demonstrate that spontaneous Ca-dependent activity in pre-hearing IHCs regulates some of the key biophysical and molecular features of the developing SGNs. KEY POINTS: Ca-dependent exocytosis in inner hair cells (IHCs) is otoferlin-dependent as early as postnatal day 1. A lack of otoferlin in IHCs affects potassium channel expression in SGNs. The absence of otoferlin is associated with SGN hyperexcitability. We propose that type I spiral ganglion neuron functional maturation depends on IHC exocytosis.
螺旋神经节神经元(SGNs)是将来自耳蜗内毛细胞(IHCs)的声信息传递到脑干的主要感觉传入神经元。不同 SGN 的反应特性差异很大,以动作电位码表示广泛的声音强度。这种生物物理异质性是在听力前发育阶段建立的,此时 IHC 会自发产生 Ca 动作电位,从而驱动谷氨酸从其带状突触释放到 SGN 末梢。自发性 IHC 活动在 SGN 特征的细化中的作用在很大程度上仍然未知。使用听力前 otoferlin 敲除小鼠(Otof),其中 IHC 中的 Ca 依赖性胞吐作用被废除,我们发现发育中的 SGN 未能上调低电压激活的 K 通道和超极化激活的环核苷酸门控通道。这种延迟的成熟导致 SGN 兴奋性过高,具有不成熟的发射特征。我们还表明,与 IHC 柱侧突触的 SGN 选择性表达再生性 K 电流,突出了这些神经元的一种新的生物物理标记。RNA 测序显示,Otof 小鼠中的几种 K 通道下调,进一步支持了电生理记录。我们的数据表明,听力前 IHC 中的 Ca 依赖性活性调节了发育中 SGN 的一些关键生物物理和分子特征。 关键点: 1. IHC 中的 Ca 依赖性胞吐作用早在出生后第 1 天就依赖 otoferlin。 2. IHC 中 otoferlin 的缺乏会影响 SGN 中的钾通道表达。 3. otoferlin 的缺失与 SGN 的兴奋性过高有关。 4. 我们提出,I 型螺旋神经节神经元的功能成熟取决于 IHC 的胞吐作用。