Suppr超能文献

K5.1(Kcnj16)通道在 Dahl 盐敏感大鼠代谢性酸中毒期间调节肾脏氨代谢中的作用

Role of K5.1 (Kcnj16) Channels in Regulating Renal Ammonia Metabolism during Metabolic Acidosis in Dahl Salt-Sensitive Rats.

作者信息

Xu Biyang, Levchenko Vladislav, Zietara Adrian, Fan Sarah, Klemens Christine A, Staruschenko Alexander

机构信息

Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida.

Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida; Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida.

出版信息

Am J Pathol. 2025 Jan;195(1):115-125. doi: 10.1016/j.ajpath.2024.09.005. Epub 2024 Sep 26.

Abstract

Maintaining acid-base homeostasis is critical for normal physiological function. The kidneys are essential for regulating acid-base homeostasis through maintaining systemic bicarbonate concentration. Chronic metabolic acidosis is an independent risk factor for chronic kidney diseases. Renal inwardly rectifying potassium channel K5.1 plays an essential role in maintaining resting membrane potential. Patients with loss-of-function mutations in the KCNJ16 gene, which encodes K5.1, may have tubulopathy with hypokalemia, salt wasting, and hearing loss. Importantly, these mutations also disrupt acid-base balance, particularly causing metabolic acidosis. This study aimed to use Dahl salt-sensitive rats with a knockout of the Kcnj16 gene (SS) to investigate how the deletion of K5.1 affects the regulation of acid-base balance in salt-sensitive hypertension. SS rats displayed metabolic acidosis under a normal salt diet. Further analysis using RNA sequencing and Western blot analyses showed unchanged expression of proteins responsible for ammonia metabolism in the kidney of SS rats despite observed acidosis. However, there was a significant increase in the expression of bicarbonate transporter NBCe1, where there was a significant decrease in pendrin. In conclusion, the current study demonstrated that the loss of K5.1 impairs the sensitivity of ammonia metabolism in the kidney in response to metabolic acidosis, which provides mechanistic insights into developing potential therapeutics for conditions involving hypokalemia and acid-base abnormalities.

摘要

维持酸碱平衡对于正常生理功能至关重要。肾脏对于通过维持全身碳酸氢盐浓度来调节酸碱平衡必不可少。慢性代谢性酸中毒是慢性肾脏病的一个独立危险因素。肾脏内向整流钾通道K5.1在维持静息膜电位中起重要作用。编码K5.1的KCNJ16基因功能丧失突变的患者可能患有伴有低钾血症、失盐和听力丧失的肾小管病。重要的是,这些突变也会破坏酸碱平衡,尤其会导致代谢性酸中毒。本研究旨在使用敲除Kcnj16基因的 Dahl 盐敏感大鼠(SS大鼠)来研究K5.1的缺失如何影响盐敏感性高血压中酸碱平衡的调节。SS大鼠在正常盐饮食下表现出代谢性酸中毒。使用RNA测序和蛋白质印迹分析的进一步分析表明,尽管观察到酸中毒,但SS大鼠肾脏中负责氨代谢的蛋白质表达未发生变化。然而,碳酸氢盐转运体NBCe1的表达显著增加,而pendrin的表达则显著降低。总之,当前研究表明,K5.1的缺失损害了肾脏中氨代谢对代谢性酸中毒反应的敏感性,这为开发针对低钾血症和酸碱异常病症的潜在治疗方法提供了机制性见解。

相似文献

1
Role of K5.1 (Kcnj16) Channels in Regulating Renal Ammonia Metabolism during Metabolic Acidosis in Dahl Salt-Sensitive Rats.
Am J Pathol. 2025 Jan;195(1):115-125. doi: 10.1016/j.ajpath.2024.09.005. Epub 2024 Sep 26.
2
Kir5.1 regulates Kir4.2 expression and is a key component of the 50-pS inwardly rectifying potassium channel in basolateral membrane of mouse proximal tubules.
Am J Physiol Renal Physiol. 2025 Feb 1;328(2):F248-F257. doi: 10.1152/ajprenal.00178.2024. Epub 2025 Jan 2.
3
K7.1 knockdown and inhibition alter renal electrolyte handling but not the development of hypertension in Dahl salt-sensitive rats.
Am J Physiol Renal Physiol. 2023 Aug 1;325(2):F177-F187. doi: 10.1152/ajprenal.00059.2023. Epub 2023 Jun 15.
4
5
Characterization of a novel variant in KCNJ16, encoding K5.1 channel.
Physiol Rep. 2024 Oct;12(20):e70083. doi: 10.14814/phy2.70083.
6
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
7
Knockout of the Circadian Clock Protein PER1 (Period1) Exacerbates Hypertension and Increases Kidney Injury in Dahl Salt-Sensitive Rats.
Hypertension. 2022 Nov;79(11):2519-2529. doi: 10.1161/HYPERTENSIONAHA.122.19316. Epub 2022 Sep 12.
8
Relationship between the renin-angiotensin-aldosterone system and renal Kir5.1 channels.
Clin Sci (Lond). 2019 Dec 20;133(24):2449-2461. doi: 10.1042/CS20190876.
9
Effects of Dietary BCAAs Intake on the Blood Pressure in Dahl Salt-Sensitive Rats.
Acta Physiol (Oxf). 2025 Jul;241(7):e70070. doi: 10.1111/apha.70070.
10
Lack of a role of NHE4 in renal ammonia metabolism.
Am J Physiol Renal Physiol. 2025 Jun 1;328(6):F752-F765. doi: 10.1152/ajprenal.00044.2025. Epub 2025 Apr 16.

本文引用的文献

1
Dietary anions control potassium excretion: it is more than a poorly absorbable anion effect.
Am J Physiol Renal Physiol. 2023 Sep 1;325(3):F377-F393. doi: 10.1152/ajprenal.00193.2023. Epub 2023 Jul 27.
2
Novel KCNJ16 variants identified in a Chinese patient with hypokalemic metabolic acidosis.
Mol Genet Genomic Med. 2023 Nov;11(11):e2238. doi: 10.1002/mgg3.2238. Epub 2023 Jul 19.
3
An Update on Kidney Ammonium Transport Along the Nephron.
Adv Kidney Dis Health. 2023 Mar;30(2):189-196. doi: 10.1053/j.akdh.2022.12.005.
4
Pendrin regulation is prioritized by anion in high-potassium diets.
Am J Physiol Renal Physiol. 2023 Mar 1;324(3):F256-F266. doi: 10.1152/ajprenal.00128.2022. Epub 2023 Jan 19.
6
Biallelic loss-of-function variants in KCNJ16 presenting with hypokalemic metabolic acidosis.
Eur J Hum Genet. 2021 Oct;29(10):1566-1569. doi: 10.1038/s41431-021-00883-0. Epub 2021 Apr 12.
7
Defects in KCNJ16 Cause a Novel Tubulopathy with Hypokalemia, Salt Wasting, Disturbed Acid-Base Homeostasis, and Sensorineural Deafness.
J Am Soc Nephrol. 2021 Jun 1;32(6):1498-1512. doi: 10.1681/ASN.2020111587. Epub 2021 Apr 2.
8
Sex differences in renal ammonia metabolism.
Am J Physiol Renal Physiol. 2021 Jan 1;320(1):F55-F60. doi: 10.1152/ajprenal.00531.2020. Epub 2020 Dec 14.
9
Kcnj16 knockout produces audiogenic seizures in the Dahl salt-sensitive rat.
JCI Insight. 2021 Jan 11;6(1):143251. doi: 10.1172/jci.insight.143251.
10
Cellular plasticity: A mechanism for homeostasis in the kidney.
Acta Physiol (Oxf). 2020 May;229(1):e13447. doi: 10.1111/apha.13447. Epub 2020 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验