Suppr超能文献

高血压中的肾髓质。

Renal Medulla in Hypertension.

机构信息

Department of Physiology, Medical College of Wisconsin, Milwaukee (A.W.C., M.M.S., T.K., S.S.).

Medical College of Wisconsin, Milwaukee (A.W.C., M.M.S., T.K., S.S.).

出版信息

Hypertension. 2024 Dec;81(12):2383-2394. doi: 10.1161/HYPERTENSIONAHA.124.21711. Epub 2024 Sep 30.

Abstract

Studies have found that blood flow to the renal medulla is an important determinant of pressure-natriuresis and the long-term regulation of arterial pressure. First, a brief review of methods developed enabling the study of the medullary circulation is presented. Second, studies performed in rats are presented showing medullary blood flow plays a vital role in the pressure-natriuresis relationship and thereby in hypertension. Third, it is shown that chronic reduction of medullary blood flow results in hypertension and that enhancement of medullary blood flow reduces hypertension hereditary models of both salt-sensitive rats and salt-resistant forms of hypertension. The key role that medullary nitric oxide production plays in protecting this region from ischemic injury associated with circulating vasoconstrictor agents and reactive oxygen species is presented. The studies cited are largely the work of my students, research fellows, and colleagues with whom I have performed these studies dating from the late 1980s to more recent years.

摘要

研究发现,肾髓质的血流是压力-利钠作用和动脉血压长期调节的重要决定因素。首先,本文简要回顾了开发这些方法的研究,以研究髓质循环。其次,本文展示了在大鼠中进行的研究,表明髓质血流在压力-利钠作用关系中起着至关重要的作用,从而在高血压中起着至关重要的作用。第三,研究表明,慢性减少髓质血流会导致高血压,而增强髓质血流会降低高血压遗传性模型中盐敏感大鼠和盐抵抗性高血压的高血压。本文介绍了髓质一氧化氮产生在保护该区域免受与循环血管收缩剂和活性氧相关的缺血性损伤方面的关键作用。所引用的研究主要是我从 20 世纪 80 年代末到最近几年与我的学生、研究人员和同事一起进行的这些研究的工作。

相似文献

1
Renal Medulla in Hypertension.
Hypertension. 2024 Dec;81(12):2383-2394. doi: 10.1161/HYPERTENSIONAHA.124.21711. Epub 2024 Sep 30.
2
K7.1 knockdown and inhibition alter renal electrolyte handling but not the development of hypertension in Dahl salt-sensitive rats.
Am J Physiol Renal Physiol. 2023 Aug 1;325(2):F177-F187. doi: 10.1152/ajprenal.00059.2023. Epub 2023 Jun 15.
3
Early renal response to long-term salt loading: mitochondrial dysfunction, ER stress, and uromodulin accumulation in the kidney medulla.
Am J Physiol Renal Physiol. 2025 Jul 1;329(1):F112-F127. doi: 10.1152/ajprenal.00348.2024. Epub 2025 May 27.
4
Effect of renal medullary circulation on arterial pressure.
J Hypertens Suppl. 1992 Dec;10(7):S187-93.
5
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
6
The organum vasculosum of the lamina terminalis contributes to neurohumoral mechanisms of renal vascular hypertension.
Am J Physiol Regul Integr Comp Physiol. 2025 Feb 1;328(2):R161-R171. doi: 10.1152/ajpregu.00203.2024. Epub 2024 Dec 20.
7
Effects of Dietary BCAAs Intake on the Blood Pressure in Dahl Salt-Sensitive Rats.
Acta Physiol (Oxf). 2025 Jul;241(7):e70070. doi: 10.1111/apha.70070.
8
Renal G protein-coupled estrogen receptor 1 regulates the epithelial sodium channel promoting natriuresis to a greater extent in females.
Am J Physiol Renal Physiol. 2025 Jul 1;329(1):F1-F10. doi: 10.1152/ajprenal.00019.2025. Epub 2025 May 22.
10
Role of renal medullary heme oxygenase in the regulation of pressure natriuresis and arterial blood pressure.
Hypertension. 2007 Jan;49(1):148-54. doi: 10.1161/01.HYP.0000250086.06137.fb. Epub 2006 Oct 30.

引用本文的文献

1
Longitudinal Multi-Organ Transcriptomic Atlas of Salt-Induced Hypertension.
bioRxiv. 2025 Sep 1:2025.08.27.672714. doi: 10.1101/2025.08.27.672714.
2
Chronic ACTH Infusion Alters the Diurnal Rhythm of Sodium Excretion, Inducing Nondipping Blood Pressure and Salt-Sensitivity in Male Mice.
Hypertension. 2025 Oct;82(10):1754-1766. doi: 10.1161/HYPERTENSIONAHA.124.24473. Epub 2025 Aug 6.

本文引用的文献

1
Metabolic Responses of Normal Rat Kidneys to a High Salt Intake.
Function (Oxf). 2023 Jun 22;4(5):zqad031. doi: 10.1093/function/zqad031. eCollection 2023.
2
Microvascular Flow Imaging: A State-of-the-Art Review of Clinical Use and Promise.
Radiology. 2022 Nov;305(2):250-264. doi: 10.1148/radiol.213303. Epub 2022 Sep 27.
3
Altered renal medullary blood flow: A key factor or a parallel event in control of sodium excretion and blood pressure?
Clin Exp Pharmacol Physiol. 2020 Aug;47(8):1323-1332. doi: 10.1111/1440-1681.13303. Epub 2020 Apr 7.
4
Visualization of the intrarenal distribution of capillary blood flow.
Physiol Rep. 2019 Apr;7(8):e14065. doi: 10.14814/phy2.14065.
5
Evidence of the Importance of Nox4 in Production of Hypertension in Dahl Salt-Sensitive Rats.
Hypertension. 2016 Feb;67(2):440-50. doi: 10.1161/HYPERTENSIONAHA.115.06280. Epub 2015 Dec 7.
6
Reactive oxygen species as important determinants of medullary flow, sodium excretion, and hypertension.
Am J Physiol Renal Physiol. 2015 Feb 1;308(3):F179-97. doi: 10.1152/ajprenal.00455.2014. Epub 2014 Oct 29.
7
Renal medullary circulation.
Compr Physiol. 2012 Jan;2(1):97-140. doi: 10.1002/cphy.c100036.
8
Medullary thick ascending limb buffer vasoconstriction of renal outer-medullary vasa recta in salt-resistant but not salt-sensitive rats.
Hypertension. 2012 Oct;60(4):965-72. doi: 10.1161/HYPERTENSIONAHA.112.195214. Epub 2012 Aug 27.
9
Impact of nitric oxide-mediated vasodilation on outer medullary NaCl transport and oxygenation.
Am J Physiol Renal Physiol. 2012 Oct;303(7):F907-17. doi: 10.1152/ajprenal.00055.2012. Epub 2012 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验