Shanmugam Sri Karthika, Kanner Scott A, Zou Xinle, Amarh Enoch, Choudhury Papiya, Soni Rajesh, Kass Robert S, Colecraft Henry M
Department of Physiology and Cellular Biophysics.
Doctoral Program in Neurobiology and Behavior.
bioRxiv. 2024 Sep 17:2024.09.17.613539. doi: 10.1101/2024.09.17.613539.
Protein posttranslational modification with distinct polyubiquitin linkage chains is a critical component of the 'ubiquitin code' that universally regulates protein expression and function to control biology. Functional consequences of diverse polyubiquitin linkages on proteins are mostly unknown, with progress hindered by a lack of methods to specifically tune polyubiquitin linkages on individual proteins in live cells. Here, we bridge this gap by exploiting deubiquitinases (DUBs) with preferences for hydrolyzing different polyubiquitin linkages: OTUD1 - K63; OTUD4 - K48; Cezanne - K11; TRABID - K29/K33; and USP21 - non-specific. We developed a suite of engineered deubiquitinases (enDUBs) comprised of DUB catalytic domains fused to a GFP-targeted nanobody and used them to investigate polyubiquitin linkage regulation of an ion channel, YFP-KCNQ1. Mass spectrometry of YFP-KCNQ1 expressed in HEK293 cells indicated channel polyubiquitination with K48 (72%) and K63 (24%) linkages being dominant. NEDD4-2 and ITCH both decreased KCNQ1 functional expression but with distinctive polyubiquitination signatures. All enDUBs reduced KCNQ1 ubiquitination but yielded unique effects on channel expression, surface density, ionic currents, and subcellular localization. The pattern of outcomes indicates K11, K29/K33, and K63 chains mediate net KCNQ1-YFP intracellular retention, but achieved in different ways: K11 promotes ER retention/degradation, enhances endocytosis, and reduces recycling; K29/K33 promotes ER retention/degradation; K63 enhances endocytosis and reduces recycling. The pattern of enDUB effects on KCNQ1-YFP differed in cardiomyocytes, emphasizing ubiquitin code mutability. Surprisingly, enDUB-O4 decreased KCNQ1-YFP surface density suggesting a role for K48 in forward trafficking. Lastly, linkage-selective enDUBs displayed varying capabilities to rescue distinct trafficking-deficient long QT syndrome type 1 mutations. The results reveal distinct polyubiquitin chains control different aspects of KCNQ1 functional expression, demonstrate ubiquitin code plasticity, and introduce linkage-selective enDUBs as a potent tool to help demystify the polyubiquitin code.
蛋白质通过不同的多聚泛素连接链进行的翻译后修饰是“泛素密码”的关键组成部分,该密码普遍调节蛋白质表达和功能以控制生物学过程。不同的多聚泛素连接对蛋白质的功能影响大多未知,由于缺乏在活细胞中特异性调节单个蛋白质上多聚泛素连接的方法,研究进展受阻。在这里,我们通过利用对水解不同多聚泛素连接具有偏好的去泛素化酶(DUBs)来弥合这一差距:OTUD1 - K63;OTUD4 - K48;Cezanne - K11;TRABID - K29/K33;以及USP21 - 非特异性。我们开发了一套工程化去泛素化酶(enDUBs),由与靶向GFP的纳米抗体融合的DUB催化结构域组成,并使用它们来研究离子通道YFP-KCNQ1的多聚泛素连接调节。在HEK293细胞中表达的YFP-KCNQ1的质谱分析表明,通道的多聚泛素化以K48(72%)和K63(24%)连接为主。NEDD4-2和ITCH都降低了KCNQ1的功能表达,但具有独特的多聚泛素化特征。所有的enDUBs都减少了KCNQ1的泛素化,但对通道表达、表面密度、离子电流和亚细胞定位产生了独特的影响。结果模式表明,K11、K29/K33和K63链介导了KCNQ1-YFP在细胞内的净保留,但实现方式不同:K11促进内质网保留/降解,增强内吞作用,并减少再循环;K29/K33促进内质网保留/降解;K63增强内吞作用并减少再循环。enDUBs对KCNQ1-YFP的影响模式在心肌细胞中有所不同,强调了泛素密码的可变性。令人惊讶的是,enDUB-O4降低了KCNQ1-YFP的表面密度,表明K48在正向运输中起作用。最后,连接选择性enDUBs在挽救不同的 trafficking缺陷型长QT综合征1型突变方面表现出不同的能力。这些结果揭示了不同的多聚泛素链控制KCNQ1功能表达的不同方面,证明了泛素密码的可塑性,并引入了连接选择性enDUBs作为一种有力的工具来帮助揭开多聚泛素密码的神秘面纱。