Suppr超能文献

探索古菌前沿:生物信息学流程的见解与展望

Navigating the archaeal frontier: insights and projections from bioinformatic pipelines.

作者信息

Karavaeva Val, Sousa Filipa L

机构信息

Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.

Vienna Doctoral School of Ecology and Evolution, University of Vienna, Vienna, Austria.

出版信息

Front Microbiol. 2024 Sep 23;15:1433224. doi: 10.3389/fmicb.2024.1433224. eCollection 2024.

Abstract

Archaea continues to be one of the least investigated domains of life, and in recent years, the advent of metagenomics has led to the discovery of many new lineages at the phylum level. For the majority, only automatic genomic annotations can provide information regarding their metabolic potential and role in the environment. Here, genomic data from 2,978 archaeal genomes was used to perform automatic annotations using bioinformatics tools, alongside synteny analysis. These automatic classifications were done to assess how good these different tools perform in relation to archaeal data. Our study revealed that even with lowered cutoffs, several functional models do not capture the recently discovered archaeal diversity. Moreover, our investigation revealed that a significant portion of archaeal genomes, approximately 42%, remain uncharacterized. In comparison, within 3,235 bacterial genomes, a diverse range of unclassified proteins is obtained, with well-studied organisms like having a substantially lower proportion of uncharacterized regions, ranging from <5 to 25%, and less studied lineages being comparable to archaea with the range of 35-40% of unclassified regions. Leveraging this analysis, we were able to identify metabolic protein markers, thereby providing insights into the metabolism of the archaea in our dataset. Our findings underscore a substantial gap between automatic classification tools and the comprehensive mapping of archaeal metabolism. Despite advances in computational approaches, a significant portion of archaeal genomes remains unexplored, highlighting the need for extensive experimental validation in this domain, as well as more refined annotation methods. This study contributes to a better understanding of archaeal metabolism and underscores the importance of further research in elucidating the functional potential of archaeal genomes.

摘要

古菌仍然是研究最少的生命领域之一。近年来,宏基因组学的出现导致在门水平上发现了许多新的谱系。对于大多数古菌而言,只有自动基因组注释才能提供有关其代谢潜力和在环境中作用的信息。在这里,利用2978个古菌基因组的基因组数据,使用生物信息学工具进行自动注释,并进行共线性分析。进行这些自动分类是为了评估这些不同工具在处理古菌数据方面的表现如何。我们的研究表明,即使降低了阈值,一些功能模型仍无法涵盖最近发现的古菌多样性。此外,我们的调查显示,大约42%的古菌基因组仍未得到表征。相比之下,在3235个细菌基因组中,获得了各种各样未分类的蛋白质,像一些研究充分的生物体,其未表征区域的比例要低得多,范围从<5%到25%,而研究较少的谱系与古菌相当,未分类区域的范围为35 - 40%。通过利用这一分析,我们能够识别代谢蛋白标记,从而深入了解我们数据集中古菌的代谢情况。我们的研究结果凸显了自动分类工具与古菌代谢全面图谱之间的巨大差距。尽管计算方法取得了进展,但仍有很大一部分古菌基因组未被探索,这突出表明在该领域需要进行广泛的实验验证以及更精细的注释方法。这项研究有助于更好地理解古菌代谢,并强调了进一步研究以阐明古菌基因组功能潜力的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验