State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China.
PaddleHelix Team, Baidu Inc., Shenzhen, 518000, China.
Eur J Med Chem. 2024 Dec 15;280:116945. doi: 10.1016/j.ejmech.2024.116945. Epub 2024 Oct 6.
TLR4 signaling is instrumental in orchestrating multiple aspects of innate immunity. Developing small molecule inhibitors targeting the TLR4 pathway holds potential therapeutic promise for TLR4-related disorders. Herein, an artificial intelligence (AI)-powered next-generation screening approach, employing HelixVS and HelixDock, was utilized to focus on the TLR4-TLR4∗ (a second copy of TLR4) homodimerization surface, leading to the identification of a potent pyrazolo[1,5-a]pyrimidine derivative, designated as compound 1. An extensive structure-activity relationship (SAR) exploration culminated in the discovery of the lead compound TH023, which effectively blocked the LPS-stimulated NF-κB activation and nitric oxide overproduction in HEK-Blue hTLR4 and RAW264.7 cells, with IC values of 0.354 and 1.61 μM, respectively. Molecular dynamic (MD) simulations indicated that TH023 stabilized TLR4-MD-2 and disrupted its association with TLR4∗. Moreover, TH023 alleviated the lung injury and decreased pro-inflammatory cytokine levels in LPS-induced septic mice. These findings not only illuminated the strategic advantage of HelixDock in advancing the frontiers of AI-driven drug discovery, but also provided valuable structural insights for the rational design of TLR4-TLR4∗ protein-protein interaction (PPI) inhibitors based on the pyrazolo[1,5-a]pyrimidine scaffold. Overall, this study validated a new strategy for TLR4 signaling regulation by targeting its dimerization, thereby underscoring the therapeutic promise of TH023 in treating TLR4-mediated inflammatory diseases.
TLR4 信号在协调先天免疫的多个方面起着重要作用。开发针对 TLR4 途径的小分子抑制剂为 TLR4 相关疾病提供了潜在的治疗前景。在这里,我们采用人工智能(AI)驱动的下一代筛选方法,利用 HelixVS 和 HelixDock,专注于 TLR4-TLR4∗(TLR4 的第二个拷贝)同源二聚体表面,从而鉴定出一种有效的吡唑并[1,5-a]嘧啶衍生物,命名为化合物 1。通过广泛的结构-活性关系(SAR)探索,发现了先导化合物 TH023,它能有效阻断 LPS 刺激的 NF-κB 激活和 HEK-Blue hTLR4 和 RAW264.7 细胞中一氧化氮的过度产生,IC 值分别为 0.354 和 1.61 μM。分子动力学(MD)模拟表明,TH023 稳定了 TLR4-MD-2 并破坏了其与 TLR4∗的结合。此外,TH023 减轻了 LPS 诱导的脓毒症小鼠的肺损伤并降低了促炎细胞因子水平。这些发现不仅阐明了 HelixDock 在推进人工智能驱动药物发现前沿方面的战略优势,而且为基于吡唑并[1,5-a]嘧啶骨架设计 TLR4-TLR4∗蛋白-蛋白相互作用(PPI)抑制剂提供了有价值的结构见解。总之,该研究通过靶向 TLR4 的二聚化验证了 TLR4 信号调节的新策略,从而强调了 TH023 在治疗 TLR4 介导的炎症性疾病方面的治疗潜力。