Suppr超能文献

通过人工智能驱动的下一代筛选技术发现靶向 TLR4-TLR4∗同源二聚体的吡唑并[1,5-a]嘧啶衍生物。

Discovery of pyrazolo[1,5-a]pyrimidine derivatives targeting TLR4-TLR4∗ homodimerization via AI-powered next-generation screening.

机构信息

State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China.

PaddleHelix Team, Baidu Inc., Shenzhen, 518000, China.

出版信息

Eur J Med Chem. 2024 Dec 15;280:116945. doi: 10.1016/j.ejmech.2024.116945. Epub 2024 Oct 6.

Abstract

TLR4 signaling is instrumental in orchestrating multiple aspects of innate immunity. Developing small molecule inhibitors targeting the TLR4 pathway holds potential therapeutic promise for TLR4-related disorders. Herein, an artificial intelligence (AI)-powered next-generation screening approach, employing HelixVS and HelixDock, was utilized to focus on the TLR4-TLR4∗ (a second copy of TLR4) homodimerization surface, leading to the identification of a potent pyrazolo[1,5-a]pyrimidine derivative, designated as compound 1. An extensive structure-activity relationship (SAR) exploration culminated in the discovery of the lead compound TH023, which effectively blocked the LPS-stimulated NF-κB activation and nitric oxide overproduction in HEK-Blue hTLR4 and RAW264.7 cells, with IC values of 0.354 and 1.61 μM, respectively. Molecular dynamic (MD) simulations indicated that TH023 stabilized TLR4-MD-2 and disrupted its association with TLR4∗. Moreover, TH023 alleviated the lung injury and decreased pro-inflammatory cytokine levels in LPS-induced septic mice. These findings not only illuminated the strategic advantage of HelixDock in advancing the frontiers of AI-driven drug discovery, but also provided valuable structural insights for the rational design of TLR4-TLR4∗ protein-protein interaction (PPI) inhibitors based on the pyrazolo[1,5-a]pyrimidine scaffold. Overall, this study validated a new strategy for TLR4 signaling regulation by targeting its dimerization, thereby underscoring the therapeutic promise of TH023 in treating TLR4-mediated inflammatory diseases.

摘要

TLR4 信号在协调先天免疫的多个方面起着重要作用。开发针对 TLR4 途径的小分子抑制剂为 TLR4 相关疾病提供了潜在的治疗前景。在这里,我们采用人工智能(AI)驱动的下一代筛选方法,利用 HelixVS 和 HelixDock,专注于 TLR4-TLR4∗(TLR4 的第二个拷贝)同源二聚体表面,从而鉴定出一种有效的吡唑并[1,5-a]嘧啶衍生物,命名为化合物 1。通过广泛的结构-活性关系(SAR)探索,发现了先导化合物 TH023,它能有效阻断 LPS 刺激的 NF-κB 激活和 HEK-Blue hTLR4 和 RAW264.7 细胞中一氧化氮的过度产生,IC 值分别为 0.354 和 1.61 μM。分子动力学(MD)模拟表明,TH023 稳定了 TLR4-MD-2 并破坏了其与 TLR4∗的结合。此外,TH023 减轻了 LPS 诱导的脓毒症小鼠的肺损伤并降低了促炎细胞因子水平。这些发现不仅阐明了 HelixDock 在推进人工智能驱动药物发现前沿方面的战略优势,而且为基于吡唑并[1,5-a]嘧啶骨架设计 TLR4-TLR4∗蛋白-蛋白相互作用(PPI)抑制剂提供了有价值的结构见解。总之,该研究通过靶向 TLR4 的二聚化验证了 TLR4 信号调节的新策略,从而强调了 TH023 在治疗 TLR4 介导的炎症性疾病方面的治疗潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验