Suppr超能文献

在医疗保健和护理环境中创建无呼吸道病原体的环境:一项综合综述。

Creating respiratory pathogen-free environments in healthcare and nursing-care settings: a comprehensive review.

作者信息

Nagy Attila, Czitrovszky Aladár, Lehoczki Andrea, Farkas Árpád, Füri Péter, Osán János, Groma Veronika, Kugler Szilvia, Micsinai Adrienn, Horváth Alpár, Ungvári Zoltán, Müller Veronika

机构信息

Department of Applied and Nonlinear Optics, HUN-REN Wigner Research Centre for Physics, Konkoly-Thege Miklós St. 29-33, 1121, Budapest, Hungary.

Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary.

出版信息

Geroscience. 2025 Feb;47(1):543-571. doi: 10.1007/s11357-024-01379-7. Epub 2024 Oct 11.

Abstract

Hospital- and nursing-care-acquired infections are a growing problem worldwide, especially during epidemics, posing a significant threat to older adults in geriatric settings. Intense research during the COVID-19 pandemic highlighted the prominent role of aerosol transmission of pathogens. Aerosol particles can easily adsorb different airborne pathogens, carrying them for a long time. Understanding the dynamics of airborne pathogen transmission is essential for controlling the spread of many well-known pathogens, like the influenza virus, and emerging ones like SARS-CoV-2. Particles smaller than 50 to 100 µm remain airborne and significantly contribute to pathogen transmission. This review explores the journey of pathogen-carrying particles from formation in the airways, through airborne travel, to deposition in the lungs. The physicochemical properties of emitted particles depend on health status and emission modes, such as breathing, speaking, singing, coughing, sneezing, playing wind instruments, and medical interventions. After emission, sedimentation and evaporation primarily determine particle fate. Lung deposition of inhaled aerosol particles can be studied through in vivo, in vitro, or in silico methods. We discuss several numerical lung models, such as the Human Respiratory Tract Model, the LUng Dose Evaluation Program software (LUDEP), the Stochastic Lung Model, and the Computational Fluid Dynamics (CFD) techniques, and real-time or post-evaluation methods for detecting and characterizing these particles. Various air purification methods, particularly filtration, are reviewed for their effectiveness in healthcare settings. In the discussion, we analyze how this knowledge can help create environments with reduced PM2.5 and pathogen levels, enhancing safety in healthcare and nursing-care settings. This is particularly crucial for protecting older adults, who are more vulnerable to infections due to weaker immune systems and the higher prevalence of chronic conditions. By implementing effective airborne pathogen control measures, we can significantly improve health outcomes in geriatric settings.

摘要

医院和护理机构获得性感染在全球范围内日益严重,尤其是在疫情期间,对老年护理机构中的老年人构成了重大威胁。新冠疫情期间的深入研究凸显了病原体气溶胶传播的突出作用。气溶胶颗粒能够轻松吸附不同的空气传播病原体,并长时间携带它们。了解空气传播病原体的传播动态对于控制许多已知病原体(如流感病毒)以及新型病原体(如SARS-CoV-2)的传播至关重要。小于50至100微米的颗粒会一直悬浮在空气中,并对病原体传播起到显著作用。本综述探讨了携带病原体的颗粒从气道形成,经过空气传播,到在肺部沉积的过程。呼出颗粒的物理化学性质取决于健康状况和排放方式,如呼吸、说话、唱歌、咳嗽、打喷嚏、吹奏管乐器以及医疗干预。排放后,沉降和蒸发主要决定颗粒的归宿。吸入气溶胶颗粒在肺部的沉积可以通过体内、体外或计算机模拟方法进行研究。我们讨论了几种数值肺部模型,如人体呼吸道模型、肺部剂量评估程序软件(LUDEP)、随机肺部模型和计算流体动力学(CFD)技术,以及检测和表征这些颗粒的实时或事后评估方法。本文还综述了各种空气净化方法,特别是过滤在医疗环境中的有效性。在讨论中,我们分析了这些知识如何有助于创造降低PM2.5和病原体水平的环境,提高医疗和护理环境的安全性。这对于保护老年人尤为关键,因为他们由于免疫系统较弱和慢性病患病率较高,更容易受到感染。通过实施有效的空气传播病原体控制措施,我们可以显著改善老年护理机构中的健康状况。

相似文献

1
Creating respiratory pathogen-free environments in healthcare and nursing-care settings: a comprehensive review.
Geroscience. 2025 Feb;47(1):543-571. doi: 10.1007/s11357-024-01379-7. Epub 2024 Oct 11.
2
Airborne transmission of severe acute respiratory syndrome coronavirus-2 to healthcare workers: a narrative review.
Anaesthesia. 2020 Aug;75(8):1086-1095. doi: 10.1111/anae.15093. Epub 2020 May 8.
4
[Respiratory and Facial Protection: Current Perspectives in the Context of the COVID-19 Pandemic].
Acta Med Port. 2020 Sep 1;33(9):583-592. doi: 10.20344/amp.14108. Epub 2020 Jun 19.
5
Minimum Sizes of Respiratory Particles Carrying SARS-CoV-2 and the Possibility of Aerosol Generation.
Int J Environ Res Public Health. 2020 Sep 23;17(19):6960. doi: 10.3390/ijerph17196960.
6
Aerosol transmission of SARS-CoV-2? Evidence, prevention and control.
Environ Int. 2020 Nov;144:106039. doi: 10.1016/j.envint.2020.106039. Epub 2020 Aug 7.
8
Air filtration and SARS-CoV-2.
Epidemiol Health. 2020;42:e2020049. doi: 10.4178/epih.e2020049. Epub 2020 Jul 4.
10
Modeling of nursing care-associated airborne transmission of SARS-CoV-2 in a real-world hospital setting.
Geroscience. 2022 Apr;44(2):585-595. doi: 10.1007/s11357-021-00512-0. Epub 2022 Jan 5.

引用本文的文献

本文引用的文献

1
A Critical Review on Ultraviolet Disinfection Systems against COVID-19 Outbreak: Applicability, Validation, and Safety Considerations.
ACS Photonics. 2020 Oct 14;7(11):2941-2951. doi: 10.1021/acsphotonics.0c01245. eCollection 2020 Nov 18.
2
Potential airborne human pathogens: A relevant inhabitant in built environments but not considered in indoor air quality standards.
Sci Total Environ. 2023 Nov 25;901:165879. doi: 10.1016/j.scitotenv.2023.165879. Epub 2023 Jul 29.
3
Block the Spread: Barriers to Transmission of Influenza Viruses.
Annu Rev Virol. 2023 Sep 29;10(1):347-370. doi: 10.1146/annurev-virology-111821-115447. Epub 2023 Jun 12.
4
SARS-CoV-2 transmission dynamics in bars, restaurants, and nightclubs.
Front Microbiol. 2023 May 18;14:1183877. doi: 10.3389/fmicb.2023.1183877. eCollection 2023.
6
Environmental sampling for disease surveillance: Recent advances and recommendations for best practice.
J Air Waste Manag Assoc. 2023 Jun;73(6):434-461. doi: 10.1080/10962247.2023.2197825.
7
A review of current effective COVID-19 testing methods and quality control.
Arch Microbiol. 2023 May 17;205(6):239. doi: 10.1007/s00203-023-03579-9.
8
Measurements and Simulations of Aerosol Released while Singing and Playing Wind Instruments.
ACS Environ Au. 2021 Aug 27;1(1):71-84. doi: 10.1021/acsenvironau.1c00007. eCollection 2021 Nov 17.
9
Signs of immunosenescence correlate with poor outcome of mRNA COVID-19 vaccination in older adults.
Nat Aging. 2022 Oct;2(10):896-905. doi: 10.1038/s43587-022-00292-y. Epub 2022 Oct 14.
10
Markers of Chemical and Microbiological Contamination of the Air in the Sport Centers.
Molecules. 2023 Apr 18;28(8):3560. doi: 10.3390/molecules28083560.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验