The Carnegie Institution for Science, Biosphere Sciences and Engineering, Stanford, CA 94305.
SLAC National Accelerator Laboratory, Division of CryoElectron Microscopy and Bioimaging, Menlo Park, CA 94025.
Proc Natl Acad Sci U S A. 2024 Oct 22;121(43):e2407548121. doi: 10.1073/pnas.2407548121. Epub 2024 Oct 15.
Dynamic changes in intracellular ultrastructure can be critical for the ability of organisms to acclimate to environmental conditions. Microalgae, which are responsible for ~50% of global photosynthesis, compartmentalize their Ribulose 1,5 Bisphosphate Carboxylase/Oxygenase (Rubisco) into a specialized structure known as the pyrenoid when the cells experience limiting CO conditions; this compartmentalization is a component of the CO Concentrating Mechanism (CCM), which facilitates photosynthetic CO fixation as environmental levels of inorganic carbon (Ci) decline. Changes in the spatial distribution of mitochondria in green algae have also been observed under CO limitation, although a role for this reorganization in CCM function remains unclear. We used the green microalga to monitor changes in mitochondrial position and ultrastructure as cells transition between high CO and Low/Very Low CO (LC/VLC). Upon transferring cells to VLC, the mitochondria move from a central to a peripheral cell location and orient in parallel tubular arrays that extend along the cell's apico-basal axis. We show that these ultrastructural changes correlate with CCM induction and are regulated by the CCM master regulator CIA5. The apico-basal orientation of the mitochondrial membranes, but not the movement of the mitochondrion to the cell periphery, is dependent on microtubules and the MIRO1 protein, with the latter involved in membrane-microtubule interactions. Furthermore, blocking mitochondrial respiration in VLC-acclimated cells reduces the affinity of the cells for Ci. Overall, our results suggest that mitochondrial repositioning functions in integrating cellular architecture and energetics with CCM activities and invite further exploration of how intracellular architecture can impact fitness under dynamic environmental conditions.
细胞内超微结构的动态变化对于生物适应环境条件的能力可能至关重要。微藻负责全球光合作用的 50%左右,当细胞经历 CO 限制条件时,它们将核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)分隔到一个称为淀粉粒的专门结构中;这种分隔是 CO 浓缩机制(CCM)的组成部分,有助于在环境无机碳(Ci)水平下降时进行光合 CO 固定。在 CO 限制下,绿藻中线粒体的空间分布也发生了变化,尽管这种重组在 CCM 功能中的作用尚不清楚。我们使用绿藻 来监测线粒体位置和超微结构的变化,因为细胞在高 CO 和低/极低 CO(LC/VLC)之间转换。当将细胞转移到 VLC 时,线粒体从中央位置移动到细胞边缘的位置,并沿细胞的顶底轴平行排列成管状。我们表明,这些超微结构的变化与 CCM 的诱导相关,并受 CCM 主调控因子 CIA5 的调节。线粒体膜的顶底取向,而不是线粒体向细胞边缘的运动,依赖于微管和 MIRO1 蛋白,后者参与膜-微管相互作用。此外,在 VLC 适应的细胞中阻断线粒体呼吸会降低细胞对 Ci 的亲和力。总的来说,我们的结果表明,线粒体的重新定位功能在于将细胞结构和能量与 CCM 活动整合在一起,并邀请进一步探索细胞内结构如何在动态环境条件下影响适应性。